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PREFACE 

It is with great pleasure that the Climate Prediction Center and the Office of Science and 

Technology offer you this synthesis of the 39th Climate Diagnostics and Prediction Workshop 

(CDPW).  The CDPW remains a must attend workshop for the climate monitoring and prediction 

community.  As is clearly evident in this digest, considerable progress is being made both in our 

ability to monitor and predict climate.  The purpose of this digest is to ensure that climate research 

advances are shared with the broader community and also transitioned into operations.  This is 

especially important as NOAA works to enhance climate services both across the agency and with 

external partners.  We hope you find this digest to be useful and stimulating.  And please drop me a 

note if you have suggestions to improve the digest. 

I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology (NWS), for 

developing the digest concept and seeing it through to completion.  This partnership between OST 

and CPC is an essential element of NOAA climate services. 

 
David DeWitt 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

NOAA's 39th Climate Diagnostics and Prediction Workshop was held in St. Louis, Missouri 

during 20-23 October 2014. The workshop addressed the status and prospects for advancing climate 

prediction, monitoring, and diagnostics, and focused on five major themes: 

1. Prediction, monitoring, and variability of the hydroclimate with an emphasis on the Midwest 

during the growing season; 

2. The prediction, attribution, and assessment of extreme events; 

3. Sub-seasonal to interannual predictability;  

4. Latest developments in models, tools, and techniques in relation to improving climate 

prediction; 

5. Developing applications to improve climate services. 

The workshop was hosted by St. Louis University (SLU) and co-hosted by the Climate 

Prediction Center (CPC) of the National Centers for Environmental Prediction (NCEP). The 

American Meteorological Society (AMS) is a cooperating sponsor. 

The workshop featured daytime oral presentations, invited speakers and a poster session event.  

This Digest is a collection of extended summaries of the presentations contributed by participants. 

The workshop is continuing to grow and expected to provide a stimulus for further improvements in 

climate monitoring, diagnostics, prediction, applications and services. 

 



   1. HYDROCLIMATE 
MONITORING, PREDICTION 
AND VARIABILITY 
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Mechanism Behind the Spring to Summer Drought Memory and Its Potential for 
Improving the Predictability of Summer Drought over the US Great Plains 

Rong Fu1, Bing Pu1, Robert Dickinson1, and Nelun Fernando1, 2 
1 Jackson School of Geosciences, The University of Texas at Austin 

2 Texas Water Development Board, Austin, TX 

1. Introduction 

 Droughts in the US cause severe economic loss ($210B during 1980-2011 adjusted to 2011 dollars), 
making them one of the costliest of natural disasters (Smith and Katz, 2013).  “Worst droughts on record” 
now occur frequently, such as the 2011 Tex-Mex drought, the 2012 US Great Plains drought and the 2014 
California drought, enhancing the urgency for societal drought preparedness. Current climate models could 
not predict these droughts and have provided no more prediction skill than the persistence of rainfall 
anomalies (Quan et al., 2012; Hoerling et al., 2014), especially over the Great Plains, the “bread basket” of 
the US. 

Strong (Severe to exceptional) summer droughts are a result of persistent rainfall deficits.  Some droughts 
are initiated by La Niñas, and some are intensified by the sea surface temperature anomalies (SSTA) over the 
tropical Atlantic and Indian Ocean (e.g.,Trenberth et al., 1988; Lau and Peng, 1990; Cayan et al., 1999; 
Hoerling and Kumar, 2003; McCabe et al., 2004; Schubert et al., 2004; Hu and Feng, 2007; Mo et al., 2009; 
Kushnir et al., 2010; Nigam et al., 2011).   However, other strong droughts, such as those in 1988 and 2012, 
were intensified in absence of SSTA.  The latter persists from spring to summer, leading to extreme droughts 
without clear forcing from SSTA (e.g., Namias, 1982, 1991; Hoerling et al., 2013; Seager et al., 2014; Wang 
et al., 2014). Although land surface feedbacks can contribute to the drought memory (e.g.,Carson and 
Sangster, 1981; Rind, 1982; Karl, 1983; Mintz, 1984; Oglesby and Erickson, 1989; Oglesby, 1991; Dirmeyer, 

Fig. 1  Seasonal evolutions of the vertical atmospheric dynamic structure (color shades are vertical velocity 
anomalies, contours stream function anomalies normalized by their standard deviation) suggesting that 
summer droughts begin with a bartropic-like strong anomalous anticyclonic circulation in April (indicated 
by solid contours and the vertical arrow).  This anticyclonic circulation anomaly persists in the low-middle 
troposphere (indicated by horizontal arrow), along with mid-tropospheric subsidence (yellow shades), from 
spring to summer.  The seasonal and vertical distributions of the normalized streamfunction anomalies 
(approximately and equivalent to geopotential height anomalies) and those of anomalies of vertical velocity 
(unit: Pa/s) are obtained from the composite for all the severe-to-extreme droughts based on NCEP 
reanalysis during the period of 1979-2012 for the SGP (left) and NGP (right), respectively. 
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1994; Hong and Kalnay, 2000; Schubert et al., 2004; Myoung and Nielsen-Gammon, 2010), such effects 
cannot sustain drought for much more than one month in climate models’ prediction. 

 Our analysis suggests that 8 out of 13 severe-to-exceptional summer droughts were developed from 
spring droughts during the period of 1948-2012 over the US southern Great Plains (SGP).  Only 2 spring 
droughts were not followed by summer droughts.  Thus, it is important to understand the mechanisms behind 
such a spring to summer drought memory and its  potential for improving summer drought predictability. 

2. What could cause the spring to summer drought memory?  

Namias (1982, 1991) and Oglesby (1991) showed that the anomalous anticyclonic circulation or soil 
moisture in late spring are phase locked with the mean atmospheric circulation transition from the lower to 
middle troposphere westerly or cyclonic flow in spring to the anticyclonic circulation in summer.  In doing so, 
the anomalous circulation appears to strengthen the summer anticyclonic circulation during the rest of the 
summer, leading to strong summer droughts. To explore the potential sources for this persistent anomalous 
anticyclonic circulation, we analyze the composite streamfunction anomalies normalized by their standard 
deviation at each height (NSFA) for all the years with strong summer droughts during the period of 1979-
2012 (Figure 1).  Over both the SGP and northern Great Plains (NGP), the summer anticyclonic NSFA in the 
middle and lower troposphere appears to directly stem from a strong deep tropospheric anticyclonic NSFA in 
spring following a drier winter that is then maintained in the lower and middle troposphere. 

The dominant cause for such 
persistent anticyclonic anomalies 
in the middle and lower 
troposphere is explored in Fig. 2, 
which shows a comparison 
between the auto-correlation of 
the pentad 500hPa geopotential 
height (Z’500hPa) with the lead-lag 
correlation between Z’500hPa and 
soil moisture.  The pentad Z’500hPa 
is more significantly correlated 
with underlying soil moisture 
anomalies about 15-30 days 
earlier than with itself, evidencing 
that the persistent anomalous 
anticyclonic vorticity during the 
summer is caused by land surface 
feedbacks.   

In summer an extensive ridge 
occurs in the mid-troposphere 
centered over the eastern Great 
Plains. Hydrostatically, this ridge 
requires relatively cold air.  Since 
dynamic processes are weak, the ridge is largely a consequence of relative diabatic cooling compared to the 
east coast with its stronger rainfall and clouds, and to the western US with elevated surface heating and deeper 
turbulent heat transport.  This relative cooling results from relative dryness of the continental air at middle 
troposphere suppressing the diabatic heating from precipitation and the radiative heating from middle to high 
clouds, with a dynamic response of sinking motion.  Thus, we hypothesize that the persistent anticyclonic 
vorticity in summer is mainly a response to the sinking motions needed to balance a radiative and latent 
cooling spatial anomaly in the troposphere from decreases of clouds and precipitation. 

Without thermodynamic feedbacks, the adiabatic warming induced by subsidence would damp the 
anticyclonic anomalies associated with drought.  However, the decreases of clouds, rainfall and water vapor 

Fig. 2  The correlation coefficients between soil moisture anomalies (red 
curve) and the 15-30 days lagging (negative 3-5 pentads) 500 hPa 
geopotential height anomalies (Z’500hPa) are stronger than the auto-
correlation of Z’500hPa of the same phase (blue curve) during May-
July for the period of 1979-2012. Soil moisture is derived from 
NLDAS-Noah model. 
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induce anomalous diabatic cooling in the mid-troposphere to balance the adiabatic warming, thus maintain the 
subsidence and anticyclonic circulation (Fig. 3).  The latter further suppresses convection and associated 
clouds, and also enhances anticyclonic circulation through friction induced divergence in the PBL and weaker 
northward vorticity advection.  Thus, decreases of clouds, water vapor and precipitation induced by droughts 
can maintain and enhance the anticyclonic circulation through anomalous diabatic cooling in the mid-
troposphere and friction induced divergence in the PBL.  These thermodynamic feedbacks play a critical role 
in sustaining spring to summer drought memory.  

Figure 4 illustrates the key processes and feedback pathways for the initiation and development of the 
summer drought, based on the above observational evidence and discussion.  Although SSTA and/or 
interannual atmospheric variability can be critical for initiating the drought anomalies in winter and spring, 
the positive feedbacks between land surface and atmosphere, especially through cloud/water vapor and 
radiative feedbacks, precipitation feedback and PBL friction induced vorticity feedback are important for re-
enforcing the anticyclonic 
circulation anomalies and surface 
dryness.  

3. Could the spring-to-summer 
drought memory improve the 
summer drought predictability 
over the US Great Plains? 

Based on the results shown in 
Section 2, we have identified three 
important pre-conditions for spring 
to summer drought memory over the 
US Great Plains.  These conditions 
are the geopotential height anomalies 
at 500 hPa, the difference between 
temperature at 700 hPa and surface 
dewpoint, and percentile soil 
moisture anomalies. We have also 
developed a combined Multivariate 
Empirical Orthogonal Function 
(EOF) and a Canonical Correlation 

Fig. 3  Seasonal evolutions show strong reduction of latent heating (color shades, K/day) and radaitive heating 
(contours, K/day) due to decreased clouds and rainfall during April to July.  Such anomalous diabatic 
cooling, initiated by land surface drying, are responsible to the sustained subsidence shown in Figure 1.  
The seasonal and vertical distributions of the latent and radiative heating anomalies are obtained from the 
composite for all the severe-to-extreme droughts based on MERRA reanalysis during the period of 1979-
2012 for the SGP (left) and NGP (right), respectively. 

Fig. 4  Observed key processes important for drought initiation, 
development and intensification over the US Great Plains. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

6 

Analysis (CCA) 1  statistical 
prediction model to explore 
whether these pre-conditions 
provide an improved drought 
predictability and its potential 
for a summer drought early 
warning over the US Great 
Plains.   

 Figure 5 compares the 
prediction skills of this 
statistical drought prediction 
with 3-months lead time to 
those of the ensemble 
prediction of the National 
Mulit-model Ensemble 
Prediction (NMME).  The 
overall higher prediction skills 
than those of the dynamic 
models suggest that the spring-
to-summer drought memory 
could provide improved 
drought prediction over the US 
Great Plains.  We have 
provided our drought early 
warning to the Texas Water 
Development Broad (TWDB) 
in April 2014 for its brief to 
the State Drought Preparedness Council.  TWDB has formally introduced our drought early warning system 
to its stake holder (http://www.twdb.texas.gov/newsmedia/press_releases/2015/02/drought.asp). 

4. Conclusions and future works 

Severe-to-exceptional summer droughts over the US Great Plains require persistent drought memory from 
spring to summer.  Observations suggest that such persistent spring-to-summer droughts memory is initiated 
by a strong anomalous barotropic-like anticyclonic circulation in spring, and re-enforced by the coupled land 
surface, clouds and precipitation feedbacks.  

The spring-to-summer drought memory could provide improved drought predictability, as demonstrated 
by our process-based statistical drought prediction model using three key predicting factors in spring.  The 
drought early warning based on these predicting factors in spring and multivariate EOF statistical model has 
shown better skill than the dynamic prediction.  It has been recommended by state water resource agency and 
begun to enable society to transition from emergence response to the drought preparedness.  

Our results suggest that the cloud feedbacks play as important a role as the precipitation feedbacks to the 
land surface dryness in sustaining persistent large-scale subsidence, and spring to summer drought memory.  
Thus, comprehensive evaluations of the drought mechanisms in climate models, especially the impact of 
uncertainty in capturing the coupling between cloud, precipitation and land surface is an important first step 
for improving the summer drought prediction over the US Great Plains. 

Acknowledgements.  This work was supported by the NOAA’s Climate Program Office’s Modeling, 
Analysis, Predictions, and Projections Program (Grant Award NA10OAR4310157), the NASA Indicators for 
the National Climate Assessment Program (Grant NNX13AN39G) and the Jackson School of Geosciences. 

                                                 
1 The CCA prediction Tool (CPT) available at http://iri.columbia.edu/our-expertise/climate/tools/cpt/ is used. 

Fig. 5  The 3-months lead drought prediction by our process-based 
statistical model (top) showing generally higher skills than those of the 
NMME ensemble prediction (bottom) over the Great Plains,  as 
measured by the Root Mean Squared Error (RMSE, left column), ROC 
Area (below-normal, middle column), and Spearman’s correlation 
(right column) for July SPI6 using April initial conditions. 
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1. Introduction 

The summer drought of 2012 in the central United States is instructive regarding one unique feature, that 
is, its rapid intensification during the early summer (Hoerling et al., 2013; Hoerling et al., 2014). A figure 
from the NOAA report (Hoerling et al., 2013), shown here in Fig. 1a, depicts the rapid expansion of drought 
conditions in Wyoming, Colorado, Kansas, Nebraska and South/North Dakota, evolving over a mere month 
from moderate to severe status (categorized as per the U.S. Drought Monitor). The timing of this drought’s 
rapid intensification coincided with a subseasonal feature of widespread drying: Climatologically, 
precipitation in the central U.S. generally is reduced by about 25% from June to July, as shown in Fig. 1b by 
the long-term monthly rainfall 
averaged over the central U.S. 
Such a rainfall reduction occurs in 
association with the development 
of the North American Monsoon 
(NAM) and the concurrent 
formation of the upper-level 
anticyclone over the western U.S., 
nudging the jet stream northward. 
The precipitation difference of 
July minus June (Fig. 1c), 
denoted hereafter as “July-
June”, depicts a distinct zone of 
rainfall reduction to the north and 
east of the NAM region, covering 
the Central Plains and the Great 
Plains. While this seasonal 
rainfall reduction is a well-known 
phenomenon (Barlow et al., 1998; 
S.-Y. Wang and Chen, 2009), the 
extent to which a progression of 

Fig. 1 (a) Drought evolution during 
2012 obtained from the NOAA 
report (Hoerling et al. 2013a) 
showing percent of areas under 
negative PDSI from March to 
September 2012. (b) Long-term 
(1971-2000) mean monthly 
precipitation over the Central 
Plains over the domain as outlined 
in (c). (c) The long-term July-
minus-June precipitation change 
over North America. 
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drying may have amplified has not been examined. 

The extremity and extensive impacts of summer droughts such as was the case in 2012 have prompted a 
number of studies. It was thought that the lack of prominent large-scale forcing factors in the tropics, such as 
that of ENSO, is a probable reason that has impeded climate forecast models’ prediction of the 2012 drought 
(Hoerling et al., 2014; H. Wang et al., 2014). In this study, our goal was to examine possible forcing factors 
other than ENSO, with emphasis on regional drivers and mechanisms that may be related to the rapid 
advancement/expansion of drought (such as that in 2012) including the role of land-atmosphere interactions, 
circulation patterns, their interaction and, subsequently, how some or all of these may have changed.   

2. Surface conditions 

The linear trend of the 
post-1979 change in the 
July-June (i.e. July minus 
June) precipitation 
difference (from Climatic 
Research Unit monthly 
precipitation dataset, 
(Harris et al., 2014)) is 
shown in Fig. 2a. In 
comparison with Fig. 1c, the 
precipitation deficit from 
June to July is noticeably 
intensified in the northern 
part of the U.S., covering 
both the Central Plains and 
the northern Rockies.  
Around Iowa, Nebraska and 
part of Illinois, the 
precipitation reduction has 
diminished twofold when 
compared to that of the 
1980s.  Likewise, the linear 
trend of the July-June PDSI 
difference (Fig. 2b, derived 
from PRISM temperature 
and precipitation data, 
(Daly et al., 1994)) indicates 
that drought conditions have 
tended to intensify over the 
Central Plains and the 
northern Rockies during the June-to-July transition.  A trend analysis conducted on the difference between the 
averages of May and June (MJ) and July and August (JA) (not shown) also yielded a similar result in both 
precipitation and PDSI.  

Another factor worth noting is the trend in the July-June net downward radiation flux at the surface (Fig. 
2c) – derived from NLDAS-2 data (Xia et al., 2012).  The increased (positive) trend in the July-June net 
downward radiation flux reveals a pattern very similar to the decreased (negative) trend in precipitation, i.e. 
meridionally elongated pattern with a particularly strong increase in the northern Rockies and the northern 
Great Plains.  The pattern of net downward radiation flux results primarily from the change in downward 
shortwave radiation (DSWR) flux (Fig. 2d) caused by change in cloud cover or cloud thickness. In 
comparison, the trend in the July-June downward longwave radiation (DLWR; Fig. 2e) depicts an east-west 
dipole pattern with increased radiation in the southwest and decreased radiation in the northeast.  The net 

Fig. 2  Linear trends in the July-June difference of (a) precipitation (CRU 
data), (b) PDSI (PRISM data), (c) net downward radiation flux, (d) 
downward shortwave radiation flux, and (e) downward longwave 
radiation flux (NLDAS-2 data). (In (a) the red and blue colors are 
significant at the 99% level.) 
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result indicates that the central 
U.S. received either increased 
shortwave radiation in July or 
decreased radiation in June, or 
a combination of both. These 
changes are accompanied by a 
concurrent increase in 2-m air 
temperature (T2m) and 700-
200mb thickness (not shown), 
suggesting enhanced ridge 
formation in this region. 

3. Circulations vs. remote 
forcing 

As previously noted, the 
development of the NAM is 
associated with a noticeable 
transition in upper-level 
circulations from the cold 
season regime (trough) to mid-
summer regime (ridge); this is 
illustrated in Fig. 3 
(Circulation data: ensemble of 
MERRA, CFSR, ERA-Interim, 
and NCEP/DOE R-2).  In 
June, a stationary trough near 
the West Coast characterizes 
the upper-level circulation 
with the jet exit located over 
the Central Plains (Fig. 3a).  In 
July, the monsoonal 
anticyclone develops, pushing 
the jet stream northward to about 50°N (Fig. 3b); consequently the circulation change from June to July forms 
an anticyclonic anomaly over the western U.S. (Fig. 3c) and creates subsidence over the Central Plains 
(Barandiaran et al., 2013).  The linear trends in these circulations (Figs. 3d-f) reveal an intensification 
manifest as a deepened western trough in June and enhanced western ridge in July.  As a result, the July-June 
shift in the circulation (Fig. 3f) depicts an amplified ridge in the northwestern U.S. and a deepened trough in 
the northeastern U.S.  The ridge corresponds well with increased surface warming and tropospheric 
thickening (noted earlier), and is also accompanied by increased subsidence at 500-hPa (ref., Fig. 3).  Such a 
change in the circulation is apparent as a distinct short-wave pattern with a zonal wave-5 structure, a feature 
of which has been found to suppress summer moisture in the central U.S. (S.-Y. Wang et al., 2014). 

Summer anticyclonic anomalies in western North America are frequently connected to remote forcing in 
the North Pacific and Asia (Barandiaran et al., 2013).  Thus, to explore the climatic forcing of the circulation 
patterns, Fig. 4a displays the trends in the July-June SST (obtained from NOAA Extended Reconstructed SST) 
and 200-hP streamfunction and reveals a marked similarity with the 2012 situation, suggesting a contribution 
of the post-1979 trend.  The distinct short-wave train across the midlatitudes implies a link with remote 
forcing that triggers a circumglobal teleconnection, from which wave energy propagates zonally along the jet 
stream and affects North America (S.-Y. Wang et al., 2014).  Noteworthy is the weak tropical SST anomalies, 
and this feature is consistent with the lack of prominent tropical forcing in 2012 (Barlow et al., 1998).  By 
comparison, trends in the June and July circulation and SST (Figs. 4b and 4c) reveal a La Niña type of SST 
change in both months, consistent with previous studies of the global SST trends (Barlow et al., 2001; S.-Y. 
Wang and Chen, 2009).  However, July is accompanied by a stronger warming over the central North Pacific 

Fig. 3  Climatological streamfunction (m2 s-1) at 200 hPa in (a) June, (b) July 
and (c) July-June transition, with a contour interval of 5x106 in (a),(b) 
and 2.5x106 in (c).  The monthly streamfunction anomaly of the post-
1979 trend in (d) June, (e) July, and (f) July-June transition, with a 
contour interval of 1.5x106 (total change of 1979-2011). Shadings in 
(d)-(f) indicate the regression coefficients significant at the 95% 
confidence interval. The bold dashed line in (a) indicates the stationary 
trough, while “H” and “L” indicates high and low pressure anomalies, 
respectively. 
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in comparison to June, while the 
circulation anomalies between the 
two months are quite different. June 
circulation exhibits a teleconnection 
emanating from the central tropical 
Pacific through the “PNA route”, yet 
such a teleconnection is lacking in 
July.  

4. Concluding remarks 

Climatologically, precipitation in 
the central U.S. decreased by about 
25% during the June-to-July seasonal 
transition.  Since 1979, this 
precipitation reduction in the central 
U.S. has become more severe, having 
decreased twice as much in recent 
years.  At the larger scale, 
examination of T2m and tropospheric 
circulation change indicated that 
dynamical forcing was present that 
enhanced subsidence in the central 
U.S. while, at the same time, 
suppressing rainfall.  Such a long-
term change has a potential effect to 
aggravate summer droughts.  In 
particular, the analyses presented 
here indicated a marked resemblance 
between the June-to-July PDSI, 
precipitation, temperature and 
circulation shifts in their long-term 
change and those associated with the 
2012 drought – one which was characterized by a rapid expansion over the Central Plains in early summer.  
As far as drought development is concerned, one important factor revealed from this study was land-
atmosphere feedbacks over the U.S., i.e. the enhanced anticyclonic anomalies stationed over the western U.S. 
can lead to further reductions in precipitation and soil moisture in the Central U.S.  In turn, the long-term 
changes in land surface moisture and temperature can sustain or amplify the evolution of the overlying 
anticyclonic circulation and precipitation deficit.  In the long run, the land surface feedback to the 
atmospheric circulation anomalies is strong and can affect future drought expansion in the central U.S.  These 
processes could help anticipate the evolution and extent of future drought in the central U.S., especially those 
that occur in spring and can worsen in summer. 
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Fig. 1  Time series MJJA precipitation of La Niña years averaged in the SGP (see the black box in Fig. 2) 
along with CPC 3-month running mean Niño3.4 SSTA  during JFMA (i.e., centered in JFMA; blue) 
and MJJA (red) from 1950-2012. Rainfall anomalies are reordered from the driest to the wettest years. 

Why Do Some La Niña Years in the Southern Great Plains 
Have Droughts and Other Not?  

Bing Pu, Rong Fu, Robert E. Dickinson, D. Nelun Fernando 
  Department of Geological Sciences, Jackson School of Geosciences, 

The University of Texas at Austin, Austin, Texas 78712  

1. Introduction 

La Niña has long been related to the droughts in the Great Plains (e.g., Trenberth et al., 1988; Ting and 
Wang, 1997; Dai et al., 1998; Schubert et al., 2004; Seager et al., 2005a; Seager et al., 2005b; Schubert et al., 
2009 ; Seager et al., 2014). Such abnormal SSTs and their consequent diabatic heating excite wave trains 
from the tropical Pacific to North America, placing an anomalous high over the southern U.S. and also 
shifting the Pacific storm track northward and reducing local moisture transport by the Great Plains low-level 
jet and thus summer precipitation.  The recent severe 2010-2011 drought over the Southern Great Plains 
(SGP) is related to a strong La Niña event during the winter and spring, along with other factors such as 
atmospheric internal variability (Seager et al., 2014).  

However, not all La Niña events lead to droughts in the SGP.  For example the 1973-1975 La Niña event 
actually led to increased rainfall over the eastern Plains and the Gulf coast, and climate models failed to 
reproduce this rainfall change probably due to their strong sensitivity to ENSO (Schubert et al., 2004; Lau et 
al., 2006; Seager and Hoerling, 2014). What factors lead to the different rainfall responses in the area during 
La Niña years?  Seager and Hoerling (2014) have suggested that random atmosphere variability and other 
SST anomalies, e.g., tropical Atlantic and Indian ocean, may overcome the influence of the tropical Pacific.  
This issue is examined here in more details. We focus on the circulation and SSTA patterns that lead to dry 
conditions in the SGP during La Niña years. 

2. Methodology 

2.1 Datasets 

To understand how circulation pattern and moisture convergence differ for the La Niña dry and non-dry 
years, winds, geopotential height, and specific humidity are analyzed from the NCEP/NCAR reanalysis 
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Fig. 2  (a)-(c) Precipitation (mm day-1), (d)-(f) 700 hPa geopotential height (gpm) and (g)-(i) 200 hPa zonal 
wind (m s-1) anomalies between the LaDry and LaNonDry composites from DJF to JJA. Areas 
significant at the 95% confidence level are dotted (Monte Carlo test). 

(Kalnay et al., 1996; Hereafter NCEP1) from 1948-2013. The reanalysis is chosen because of its long data 
record.  Its horizontal resolution is 2.5º by 2.5º. 

The climatic Research Unit (CRU) TS3.21 (UEACRU, Jones and Harris, 2013) monthly precipitation on 
a 0.5º latitude by 0.5º longitude grid from 1901-2012 is used to examine precipitation variations. The Niño3.4, 
Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation 
(NAO) indices from Climate Prediction Center (CPC) from 1948 (or 1950) to 2013 are used to identify La 
Niña years and SST and circulation anomalies. The Hadley Centre Sea Ice and Sea Surface Temperature data 
set (HadISST; Rayner et al., 2003)  on a 1º by 1º grid from the UK Met Office is used to examine SST 
patterns. 

2.2 Criteria for La Niña dry and non-dry years 

Three-month running mean ERSST.v3bSST anomalies in the Niño3.4 region from the CPC are used to 
identify La Niña years.  Since we are interested in La Niña events that occurred before or simultaneously with 
SGP summer rainfall anomalies, the following two criteria are used to decide such events:  i) from DJF-MAM 
there are at least three consecutive over-lapping seasons with negative SSTA greater than -0.5 ºC, or ii) from 
AMJ-JAS there are at least two consecutive over-lapping seasons with negative SSTA greater than -0.5 ºC. 
Twenty-five La Niña years are so identified from1950-2013 (Figure 1).   

To understand different rainfall responses during these La Niña events, two composites, namely, LaDry 
and LaNonDry, are formed corresponding to seven driest and wettest MJJA rainfall anomalies for the twenty-
five La Niña years. MJJA average is chosen because SGP rainfall peaks from May to September, and MJJA 
precipitation contributes to about 44% of the total annual precipitation. The averaging also includes the early 
peak in May that may be more useful for agriculture planning. 
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Fig. 3  Differences of SST (K) between the LaDry 
and LaNonDry composites.  Areas significant 
at the 95% confidence level are dotted (Monte 
Carlo test). 

Fig. 4 Regression coefficients of SGP rainfall onto the standardized Niño 3.4 (red), PDO (green), AMO 
(blue), and NAO (black) indices in 25 La Niña years (bars) and from 1950-2012 (stars).  Regression 
coefficients in La Niña years significant at the 90% confidence level are topped with a “+” sign. 

3. Analysis 

SGP MJJA rainfall anomalies along with the Niño 
3.4 SSTA in JFMA (blue) and MJJA (red) are shown in 
Figure 1. MJJA Rainfall deceases in about two-thirds 
of La Niña years，consistent with previous results that 
La Niña contributes to SGP drought.  However, the 
linear relationship between Niño 3.4 SST and rainfall 
magnitude in these La Niña years is not very strong. 
MJJA rainfall has a weak negative correlation of -0.37 
(significant at the 90% confidence level) with 
concurrent Niño 3.4 SSTA. In other words, drought is 
more likely to occur in weak La Niña years. Niño 3.4 
SSTA in JFMA shows an even weaker negative 
influence (not significant) on MJJA rainfall. 

The rainfall differences between the dry and non-
dry years (Figs. 2a-c) generally resemble the patterns in 
dry years (not shown) but with greater magnitudes. 
Rainfall reduces over the Mississippi river basin and 
Midwest in DJF. The dry anomaly in the SGP 
establishes in MAM and intensifies in JJA. 

The low-level circulation pattern in MAM shares 
some similarity with that in typical La Niña years (not 
shown). The main difference is that the location of 
anomalous high over the U.S. is centered at the east 
coast instead of the Gulf coast while the geopotential 
height over the subtropical and tropical Atlantic is 
increased (Fig. 2e), suggesting an influence from the 
North Atlantic. The upper-level jet stream is shifted 
northward over the U.S. but slightly southward over the 
Atlantic (Fig. 2h).  In JJA, an anomalous high is 
located over the SGP with a low center over the eastern 
U.S. (Fig. 2f), while the Pacific jet stream is also 
shifted northward and thus favors the drought 
development (Fig. 2i).   

The differences of SST between the LaDry and 
LaNonDry composites show an anomalously warm 
SST over the tropical and high-latitude North 
Atlantic, resembling a positive AMO pattern 
(Figure 3). This pattern persists from winter to 
summer but with a weaker magnitude in summer. 
SST also decreases over the Gulf of Mexico in DJF 
but not in other seasons, which may contribute to 
the anomalous northerly flow from land to the Gulf.  
Southern Atlantic SST also decreases from DJF to 
JJA, indicating a northward shift of Atlantic ITCZ. 
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Fig. 5 Regressed 700 hPa geopotential height anomalies (gpm) between the LaDry and LaNonDry 
composites using PDO and Niño3.4 indices (left column), three SST based  indices (middle column), 
and four indices (right columns). 

The tropical Pacific SST is slightly warmer in dry years than non-dry years, mainly in DJF and MAM. In 
typical La Niña years, dry anomaly is located over the SGP in DJF and shifts northward to the northern Plains 
in JJA.  A warmer Niño 3.4 SST indicates a weaker/slower seasonal northward migration of dry anomalies, 
favoring the development of drought in the SGP. An anomalous low SST over the mid-latitude North Pacific 
also persists from DJF to JJA, resembling a positive PDO pattern, while a symmetric negative SSTA is 
located over the South Pacific.    

Figure 4 shows the regression coefficients of SGP rainfall onto the three SST based indices and NAO 
index during 1950-2012 (stars) and during 25 La Niña years (bars).  This further verifies a weak but persistent 
influence of AMO on SGP rainfall in La Niña years from winter to summer. Influence of Niño 3.4 SST on 
rainfall is very weak in spring during La Niña and reverses to a negative relationship in summer.  The NAO is 
the most important factor in JJA regardless of whether it is a La Niña year or not.  

Figure 5 shows regressed 700 hPa geopotential height using different linear combinations of indices 
discussed above for the differences between the LaDry and LaNonDry composites. The left column shows the 
influences from the Pacific Ocean (i.e., Niño3.4+PDO), middle column includes the influences of the North 
Atlantic and Pacific oceans (i.e., Niño3.4+PDO +AMO) while the right column includes the influence of 
NAO.   

The regressed pattern using Pacific indices shows relatively high correlations with the NCEP1 reanalysis 
in winter over the North Pacific-North America-North Atlantic (NPAA, 10º-60ºN, 30º-150ºW) region 
(uncentered pattern correlations 0.66) and the southern U.S. and its surroundings (USS, 20º-43ºN, 80º-120ºW; 
0.63), but quite low or even negative correlations for spring and summer. Regressions using four indices have 
largely increased the correlations in both NPAA (e.g., 0.87 in DJF and 0.62 in JJA) and USS (e.g., 0.93 in 
DJF and 0.65 in MAM) regions except in summer when the patterns over the USS is better captured without 
the NAO index.   
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In La Niña dry years the above indices can explain about 63% of rainfall anomaly in MAM and 38% in 
JJA. Such a decrease of explanation from spring to summer suggests a contribution from factors other than 
SSTAs and NAO, such as soil moisture feedbacks and radiative feedbacks from the reduction of cloud that 
can amply the drought, and from random atmospheric variability. The wet anomaly in the summer is not 
captured and may also due to these factors. Overall, the rainfall differences between the dry and non-dry 
composites are explained by 36% in MAM and 23% in JJA with these indices.  

4. Conclusions and discussion 

• There are distinct circulation patterns between La Niña dry and non-dry years in the SGP. Droughts 
are associated with anomalous high geopotential height and subsidence over the SGP, along with an 
intensified northward moisture flux that transports moisture to the northern Plains and Midwest and a 
northward displacement of the North Pacific and Atlantic jet streams.   

• Anomalous SST patterns are found between dry and non-dry years: i) a warm SSTA over the North 
Atlantic that resembles a positive AMO pattern; ii) a relatively warm Niño3.4 SST. Such an 
anomalous positive AMO pattern enhances the geopotential height over the northern Atlantic and thus 
strengthens and shifts the high center over the SGP toward the southeast, and it also modifies the 
location of subtropical jet streams. A weaker La Niña, by delaying the seasonal northward shift of the 
dry anomaly during MAM and JJA, also contributes to the development of drought in the SGP. 

• Niño 3.4, PDO, AMO and NAO indices can largely reproduce the anomalous geopotential height 
patterns between dry and non-dry years in DJF but less in MAM and JJA mainly due to a worse 
representation of anomalous wet condition.  

• Although previous studies have identified the role of the AMO in SGP drought, this analysis 
highlights its influences in La Niña years that contribute to the anomalous large-scale patterns that 
favor the development of drought. Thus improving model performance in simulating the influence of 
Atlantic SST on SGP rainfall may enhance the capability of drought modeling and prediction in this 
region.    
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CPC’s New Week-2 Probabilistic Hazards Forecast and Extremes Tool  

Melissa Ou, Ken Pelman, Mike Charles, and Jon Gottschalck 
  Climate Prediction Center, NCEP/NWS/NOAA 

1. Introduction 

For the last 13 years, the Climate Prediction Center (CPC) has been issuing days 3-14 hazards forecasts 
daily. This is a manually produced forecast in deterministic format highlighting areas that have elevated risk 
of various hazards, such as wildfires, flooding, much above/below normal temperatures, heavy precipitation, 
etc. Model improvements in daily weather forecasts have enabled weather centers (such as the Weather 
Prediction Center, Storm Prediction Center, etc.) to issue national forecasts with longer lead times, mainly up 
to 7 days.  Therefore, CPC is now focusing on improving the national hazards forecasts beyond week-1, from 
days 8-14, which will be referred to as week-2 in this article. 

Beyond week-1, it is more useful and robust to present forecasts in a probabilistic format, rather than 
deterministic due to the greater uncertainty associated with models at longer lead times. CPC is now issuing 
experimental manual forecasts daily of hazards presented in a probabilistic format, similar to the majority of 
CPC’s outlooks. The underlying probabilistic threshold used to issue a deterministic hazard is intrinsically 
high. Shifting the paradigm to a probabilistic format allows CPC’s forecasters to highlight more areas with 
lower probabilities, thus providing users with more information about potential hazards during week-2.  The 
probabilistic hazards outlook has three risk levels slight, moderate, and high corresponding to a 20%, 40%, 

 
 

   
 
Value at 40.89-96.78 is 15.41% 

Fig. 1  Sample screenshot of the CPC probabilistic extremes tool for September 16, 2014.  Probabilities of 
daily maximum temperatures on day 8 exceeding the 15th percentile are shown. Various features of the 
tool are highlighted in purple boxes. 
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and 60% chance of occurring. This additional information about the probability of an event occurring may 
significantly add value to the forecast for decision makers.  

The main guidance used to produce the new probabilistic hazards forecast is a newly developed extremes 
tool at CPC. This tool has probabilities retrieved from the CPC reforecast tool, which involves post-
processing ensemble model guidance using historical reforecasts to produce calibrated week-2 daily 
probabilistic forecasts of daily maximum and minimum temperatures at varying climatological percentiles 
and threshold values, including those deemed as extreme. This tool will also be made available publicly in the 
future. 

A main motivation for this project was the need by CPC hazards forecasters for more guidance and tools 
in the week-2 period. Much of the available guidance is presented as deterministic model run output from 
both deterministic models and ensemble means.  Additionally, there is a growing need and interest in 
extremes and hazards outlooks, especially in the subseasonal timescale beyond week-1. These 
extreme/hazardous events often have the most impact to life, property, and commerce. More interests want 
longer lead times for early detection and preparedness. The hope is that this new extremes tool and 
probabilistic hazards outlook will be beneficial to a wide variety of users, especially decision makers. 

The main goal of this article is to introduce the new probabilistic hazards forecast product and extremes 
tool and discuss the transition of the hazards product. Both the extremes tool and probabilistic hazards 
outlook are currently being produced for daily forecasts of 2-m minimum and maximum temperatures (which 
will be referred to as Tmin, and Tmax, respectively, in this article). CPC is planning to use a phased approach 
to add more variables in the future, such as for winds and precipitation. Some initial verification results are 
also shown from the probabilistic extremes tool for week-2 daily forecasts of Tmin being less than the 15th 

Fig. 2  Reliability diagrams are shown on the top row for daily minimum temperature forecasts produced by 
the extremes tool for probabilities less than the 15th ptile for all day leads including all forecasts from 
2013 (left) and just the winter months (Jan, Feb, and Dec) of 2013 (right). The black line indicates what 
would be considered a perfectly reliable forecast. The bottom row shows histograms of the number of 
cases for all the probability bins for the associated reliability plots above. The ‘# Cases’ on the y-axis 
refers to the fact that this shows the number of forecasts in each probability bin over time and space. 
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percentile, over the CONUS domain for a year (January 2013 to December 2013).  We focused on Tmin 
because we wanted to get an idea of how skillful the tool was since CPC would be using it as guidance to 
produce probabilistic hazards forecasts for the upcoming winter season. The 15th percentile was evaluated 
because CPC typically uses this as the general threshold for deeming an event as hazardous.  

2. Data 

2.1 Training and forecast data 

The underlying data for the extremes tool is from the CPC Reforecast Tool for daily minimum and 
maximum 2-m temperatures. These are formatted as the probabilities of a location being greater than a 
specified range of percentiles. The extremes tool software performs further postprocessing to convert this data 
for being less than or greater than varying thresholds for temperature values as well as percentiles. The 
reforecast tool calibrates realtime ensemble forecasts from the Global Ensemble Forecast System (GEFS), 
with physics operational during 2012, using the ensemble regression method (Unger 2009).  Longterm 
statistics are derived using the 25-year GEFS reforecast dataset (past forecasts produced by the frozen 2012 
GEFS model), provided by the Earth System Research Laboratory (ESRL), and the associated observations 
(the “day zero” analysis from GEFS). The reforecast dataset includes 11 ensemble members (including a 
control run) for each day of the 25 years, and the realtime GEFS has 21 members, daily. Further details 
regarding these datasets can be found in the 38th CDPW Digest summary article, “Sensitivity Study of the 
Skill of the CPC Week-2 Reforecast Tool to Reforecast Sampling” (Ou et al. 2014).  

2.2 Verification data 

The observational data used to produce verification results is 1 degree global, gridded, daily minimum 
temperature values that merges land and ocean observations from 2 different datasets from 1985 to 2010. 
Land data uses 1/6 degree gridded data that is derived from the Global Telecommunication System (GTS), 
which contains observations from about 600 US stations; data over oceans comes from the GEFS analyses, 
taken as the mean from 4 update cycles of the GEFS day zero analyses (forecast hours F006, F012, F018, and 
F024).  The observation and forecast percentiles were determined using a climatology dataset derived from 
this merged observation dataset using all 25 years. CPC typically uses 30year climatologies, but due to the 
fact that reforecast data only goes back to 1985, a 25year dataset was created and used. 

3. About the Week-2 CPC Probabilistic Extremes Tool 

A week-2 probabilistic extremes outlook tool was developed to provide guidance to forecasters for 
producing probabilistic hazards forecasts. This tool was also developed with the intention for the public to 
eventually be able to access and utilize it across various interests via a web interface, hopefully aiding 
decision makers in planning. As a change 
in the typical paradigm to product 
development at CPC, feedback was 
sought prior to the development of the 
tool, in the hopes that the end product 
would be more userfriendly and that the 
content would be found useful to a wide 
variety of interests. Mockup designs of 
the user interface were presented to a 
number of users, including the Federal 
Emergency Management Agency 
(FEMA) and at the 11th Climate 
Prediction Applications Science 
Workshop (CPASW).  This feedback was 
the driving factor for the design, features, 
and content, such as the set of percentile 
and temperature thresholds. 

Fig. 3  Percent of total cases with forecast probabilities greater 
than 20% for all leads, including all dates in 2013 (blue line) 
and only the winter months (red line). 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

24 

The extremes web tool presents the forecast as the probabilities of minimum or maximum temperatures 
being less than or greater than a set of thresholds. Thresholds are available as both percentiles and 
temperature values. Figure 1 shows a sample screenshot of the extremes tool. Below is a list of the current 
features and options in the web tool (highlighted in purple in Figure 1): 

• Minimum and maximum temperatures 
• Thresholds in percentiles and temperature values 
• Daily outlooks for days 8 to 14 
• Probabilities based on the calibrated GEFS reforecast tool and uncalibrated GEFS forecasts 
• Ability to click on any location and retrieve the latitude, longitude, and probability associated with 

that location 
• Zoom-in and zoom-out functionality 

This tool is currently available for the U.S. domain, including Alaska and Hawaii.  Based on further 
evaluation results and quality control tests, the global domain of forecasts may be made available publicly as 
well.  

4. Verification results 

The skill of daily week-2 probabilistic forecasts of minimum temperatures being less than the 15th 
percentile is evaluated using the ranked probability skill score (RPSS) and reliability.  These skill metrics 
were chosen because they have been shown to be appropriate scores for assessing the skill of probabilistic 
forecasts. Results are presented for using all dates from January 21, 2013 to December 31, 2013 as well as 
only the winter months (Jan, Feb, and Dec) for 2013. 

Overall, reliability (Fig. 2) was pretty good until day 13, for including all dates in the assessment period 
and only the winter months. There was poorer reliability at higher probabilities (i.e. greater than 60%), which 
may be due to the fact that there are less forecasts in this probability range and that it is typically inherently 

 

Fig. 4  CONUS averaged RPSS of daily week-2 Tmin 
forecasts for each lead time (top left) assessed 
over 2013. Timeseries of the RPSS of minimum 
temperature forecasts over 2013 for days 8 (top 
right) and 14 (bottom left). Zero skill (black 
horizontal line) and the average score over time 
(dashed red) are shown. Purple boxes 
surrounding values highlights the winter months. 
All scores are based on forecasts valid 1/21/13-
12/31/13. 



OU ET AL. 
 

 

25 

harder to have accurate reliability at higher probabilities. 

For a forecaster, what would be useful is knowing that at days 8 and 9, forecast probabilities tend to be 
underconfident, potentially indicating that they should slightly bump up probabilities at i.e. the 20-50% range. 
Beyond day 9, forecasts tend to be overconfident at probabilities of 40% or greater, so they should be cautious 
of putting higher probabilities. One possible explanation for the underconfidence of the days 8 and 9 forecasts 
is that the ensemble regression method (used to produce the forecasts) does not widen the distribution about 
the members at the tails relative to near the ensemble mean. Therefore, the probabilities at the tails of the 
distribution are not increased sufficiently. From our experience it would appear that the probabilities do 
increase in the calibrated versus uncalibrated GEFS forecasts, but perhaps not enough.  The overconfidence of 
forecasts at longer lead times likely stems from the fact that the spread of the ensemble is higher at those 
leads, resulting in probabilities that are more confident in the tails of the distribution, but not with more skill. 

The associated histograms (Fig. 2) showing the number of forecasts (referred to as cases in the plots) in 
each probability bin indicates that the winter season of 2013 had a greater portion of occurrences of higher 
probabilities than when including all dates from all seasons, where cases are over time and space. This is most 
likely due to better predictability during the winter season because it is typically harder to predict summer 
convective events. 

One concern that we had when we first started discussing a probabilistic hazards product and extremes 
tool was that the tool may produce a very low frequency of forecasts for the tails of the distribution, especially 
with probabilities that we deem high enough to consider drawing an associated probabilistic hazards contour 
on the forecast map. For our purposes, we chose 20% as the minimum forecast probability to consider as a 
potential hazard.  

Our results show that a significant number of cases predicted forecasts with probabilities greater than 20 
percent. Figure 3 shows the percent of forecasts (over time and space) in 2013 that had probabilities of greater 
than 20 percent, for both all dates and 
winter months only. This plot indicates 
that 24 to 35 percent of the winter 
forecasts had probabilities greater than 
20%. Day 10 had the greatest percent 
of > 20% probabilities (35%), and day 
14 had the least (24%). Day 8 and 9 
fell somewhere in the middle. When 
considering all dates in 2013, the 
percent of >20% probabilities was 
much lower than only winter months, 
ranging from 10% (days 8 and 14) to 
23% (day 9). This is again, likely due 
to the inclusion of seasons (such as 
summer) with less predictability, 
although the day 8 value for all 2013 
looks suspiciously low compared to the 
other longer leads.  

To evaluate the RPSS and 
reliability, we created 3 categories to 
represent the distribution of percentiles 
associated with the 15th percentile 
(RPSS requires multiple categories to 
be used). The 3 categories are Tmin < 
15th percentile, 15-85th percentile, > 
85th percentile.  Fig. 5  RPSS over the CONUS for Tmin forecasts for days 8 

(upper) and 14 (lower) for 1/21/13-12/31/13. 
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The RPSS averaged over the CONUS (Fig. 4) for 2013 yielded pretty good results, with the highest skill 
for forecasts on day 8 at about 0.28, and just below 0.2 by day 14. RPSS was positive for all leads, meaning 
the forecasts performed better than climatology for all leads.  These results showed minimal loss in skill, even 
out to day 14, which is promising.  For comparison, CPC’s official 8-14 day tercile, probabilistic forecasts for 
the 7day mean temperature, had an RPSS of 0.12 for the same period. The higher skill for the extremes 
compared to the mean temperature may be attributed to the fact that there is more reward in RPSS for the tails 
of the percentile distribution. The timeseries of RPSS for days 8 and 14 shows that almost all of the forecasts 
had positive RPSS, with the highest scores during fall and winter. 

Spatial evaluation of the RPSS of Tmin forecasts reveals positive skill across the entire CONUS for days 
8 and 14 (other leads in the middle not shown), excluding a small area in southern California (which may be 
due to a bad data issue associated with the land border).  This shows that there is an improvement upon 
climatology for all locations of the CONUS. The spatial distribution of skill was relatively uniform, with the 
least skill across the Southern Plains for both leads, and the most skill across the Southeast. The majority of 
the CONUS had skill of 0.2 or greater at day 8, and 0.1 or greater at day 14. 

Reliability diagrams (Fig 6) reveal pretty good reliability for all three categories at day 8.  The lower 
category (< 15th percentile) was underconfident for all probabilities, whereas the middle category (15-85th 

percentile) and above category (> 85th percentile) have better reliability, although somewhat overconfident at 
higher probabilities. At day 14, reliability is significantly worse than day 8, as expected. The lower category 
at day 14 is overconfident, which is the opposite of the day 8 results. This may be in part due to the fact that 
the model often produces higher probabilities at a longer leads, thinking it has more skill than would really 

Day 8 Tmin Reliability, all 2013 
(Separate Categories) 

Day 14 Tmin Reliability, all 2013 
(Separate Categories) 

Fig. 6  The top row shows reliability diagrams for days 8 (top left) and 14 (top right) for 3 categories of 
percentile thresholds. The black diagonal line indicates what would be considered perfect reliability. 
The bottom row shows associated histograms (with the reliability diagrams above) with the number 
of forecasts associated with each of the probability bins for days 8 (bottom left) and 14 (bottom right) 
for the same categories. 
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exist at that lead. There is likely less calibration performed at shorter leads than longer leads because skill is 
typically higher at shorter lead times. Therefore, the probabilities get scaled back more for shorter leads 
compared to the longer (calibration tends to lower the typically higher forecast probabilities from raw, 
uncalibrated ensemble forecasts). Results also indicate that at lead 8, there are more cases in the extreme 
categories (< 15th and >85th 
percentiles) with higher 
probabilities than day 14, as 
expected. There is better skill at 
shorter lead times, producing 
sharper probability distributions 
by the model. For both leads, 
the outlying reliability values 
for lower probabilities are likely 
due to the small sample sizes of 
forecasts in those probability 
bins. Curves in the reliability 
diagram are not shown in the 
day 14 diagram for probability 
bins greater than 0.6 because 
there were no forecasts of any 
category in those bins at that 
lead. 

5. Week-2 Probabilistic 
Hazards Forecast  

a. About the forecast 

CPC has been issuing daily 
probabilistic week-2 (days 8-14) 
hazards forecasts over the 
CONUS and Alaska since July 
2014, in addition to the week-2 
deterministic map, which has 
been issued for a number of 
years. These are manually 
drawn by the forecaster and are 
publicly available on the CPC 

Fig. 7  Model run 500MB heights (yellow contours) and vorticity (shaded) from the deterministic 0Z 
ECMWF (left) and deterministic 6Z GFS (center). 500MB heights (yellow contours) and ensemble 
spread (shaded) are shown from the 6Z GEFS (right). All maps are valid 9/16/14, 18Z. 

Fig. 8  Extremes tool forecast valid day 8, showing the probabilities of 
the daily maximum temperatures exceeding the 85th percentile 
(upper) and 90 degrees F (lower) based on CPC’s GEFS reforecast 
tool. 
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website. The probabilistic week-2 maps represent the probabilities of a daily minimum or maximum 
temperature reaching what we deem as hazardous criteria for each of the days in week-2, which is by nature a 
subjective forecast.  Forecasters use the previously discussed probabilistic extremes tool as the main guidance 
regarding the probabilities, looking at both the percentiles and temperature value thresholds.  They 
additionally evaluate the daily synoptic pattern and temperatures from various models.  The hazards 
highlighted on the map are based on the forecasters’ previous experiences and base knowledge and agreement 
amongst forecasters of what are considered regional thresholds and conditions for hazardous events.  This 
information is often obtained from discussions and criteria provided by external regional interests and 
forecasters, such as the local weather forecast offices (WFOs). As mentioned earlier, CPC typically uses the 
upper and lower 15th percentiles as guidance for possibly deeming an event as hazardous, in combination with 
the probabilities of a temperature being below or above a certain threshold, which varies based on the location 
and time regime. Every Tuesday, a briefing is hosted by the hazards forecaster in which various interests dial-
in, providing feedback and suggestions regarding the forecast. This enables local and regional weather service 
offices to provide valuable information to the hazards forecaster regarding whether an event should be 
highlighted or not, in addition to ensuring forecast coordination on various National Weather Service levels. 

There are 3 levels of probabilities of a hazardous event occurring that are included in the forecast. Each 
level is denoted on the map with a qualitative description which has underlying probabilities associated with 
them. Qualitative versions of describing the risk level were used because it may convey the concept of 
varying probabilities better to the public.  These categories are similar to those used by the Storm Prediction 
Center (SPC). The risk levels and their associated forecast probabilities are slight risk (20%), moderate risk 
(40%), and high risk (60%). Any contours greater than or equal to 40% (moderate or high risk) are 
automatically included on the week-2 deterministic hazards map. The web page for this product is 
http://www.cpc.ncep.noaa.gov/products/predictions/threats/threats.php.  

b. Example forecast case  

An example case of a forecast valid September 16, 2014 is discussed here. The daily model runs from the 
deterministic 0Z ECMWF and 6Z GFS, and 6Z GEFS (18Z) (Fig. 7) all indicated the possibility of an 
amplified ridge developing across the northwestern CONUS, with some variation in the level of amplification 
and ridge axis orientation. The 0Z ECMWF had the most amplified pattern, with the ridge axis focused over 
the Pacific Northwest, while the GFS 
and GEFS had the ridge shifted 
slightly eastward and not as amplified. 
Overall, this pattern would indicate the 
potential for warmer temperatures 
across the northwestern CONUS.  

The probabilistic extremes tool for 
this day (Fig. 8) showed a 30-40% 
chance of Tmax being greater than the 
85th percentile for the Pacific 
Northwest, and 30% chance of this 
area being greater than 90 degrees F. 
This temperature would be considered 
unusually high for this time of year 
with respect to the region. Therefore, 
the forecaster decided to issue a slight 
risk for much above normal 
temperatures for parts of Washington 
and Oregon for this day, as well as a 
moderate area embedded within this 
slight risk contour, focused over the 
central portion of this region (Fig. 9). 

Fig. 9  Week-2 CPC probabilistic hazards forecast issued 9/8/2014, 
valid 9/16/2014-9/22/2014.  Contours represent slight (light red 
solid line), moderate (medium red dotted line), and high risk 
(dark red dashed line) of much above normal temperatures. 
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An additional area was highlighted across the Pacific Northwest eastward into Montana for days 9 and 10 (not 
shown).  

The verifying observations (Fig. 10) show that on 9/16/2014 temperatures were above normal that day 
across the Pacific Northwest, with anomalies in the 10-12 degrees F range and temperatures reaching 85 to 90 
degrees. Overall, this would be considered a pretty good forecast, in that it did highlight the main areas that 
these temperatures would be considered very anomalous. The forecast area probably could have been 
extended slightly eastward into Idaho as well.  

For the following day, the highlighted area for slight risk was not too bad either. The greatest temperature 
anomalies occurred over western Montana, which was included in the contour, although temperatures were 
only around 80 to 85 degrees F.  

An example screenshot of CPC’s hazard webpage that includes the week-2 probabilistic hazards forecast 
is shown in figure 11. There are options on the page to view the days 3-7 and 8-14 hazards forecast as well as 
the days 8-14 probabilistic forecast. 

6. Summary 

CPC has a new week-2 probabilistic hazards forecast, issued daily, which highlights potential hazards in 
probabilistic format. Currently this is done for Tmin and Tmax, but additional variables are planned to be 
added in the future. There are 3 categories representing the levels of likelihood of an event occurring. The 
thinking is that as the lead time shortens for an event, the probabilities of the event occurring may increase 

Fig. 10  Verifying observations of Tmax (left column) and Tmax anomalies (right column), for 
9/16/2014 (top row) and 9/17/2014 (bottom row). All values are in degrees F. 
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due to higher certainty, finally enabling the hazard to be included on the deterministic map. The main 
guidance for this product is the newly developed probabilistic extremes tool at CPC, which provides an 
objective probabilistic outlook of extreme temperatures at varying percentile and temperature thresholds. The 
underlying data of the tool is currently from the reforecast tool at CPC, which calibrates GEFS model output 
using long term statistics from the 25year GEFS reforecast dataset.  

The benefit of having the week-2 hazards in probabilistic format is that it enables more hazards to be put 
on the map. Previously, when CPC only issued the deterministic days 8-14 hazards, forecasters were often 
unable to put hazards on the map because of the inherent higher confidence/probabilities required to delineate 
a hazard deterministically would be very high.  By expressing hazards as probabilities with varying tiers of 
likelihood, forecasters are able to include lower certainty/probability events at a longer lead. Extra 
information associated with these levels of likelihood will hopefully add value to the forecasts, especially for 
decision makers. 

Overall, the initial verification of the probabilistic extremes tool shows positive skill (reliability and 
RPSS). There is decent improvement over climatology and shows the best skill for the winter season, which is 
expected since winter typically has better predictability. The tool produces significant probabilities (defined 

Fig. 11  Example screenshot of 
CPC’s hazards page, which 
now includes the probabilistic 
week-2 hazards forecast. 
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as 20% or greater) of extremes at a pretty good frequency, enabling forecasters to potentially include an event 
on the probabilistic hazards forecast 10 to 20% of the time (based on a year’s worth of evaluation over 2013).  
There are especially good opportunities for hazardous Tmin probabilities to be issued during the winter 
season. 

7. Ongoing/future work 

This project is planned to have a phased approach for adding new features, such as more variables 
(precipitation, wind, etc.), thresholds, and models. Another tool is currently being developed at CPC, which 
consolidates forecasts from different sources (dynamical and statistical models), by which the weights used 
for combination are determined by the past skill of the model/tool. CPC plans to utilize this consolidated 
forecast to derive a multimodel forecast for probabilistic extremes in the future. This would hopefully 
improve the skill of the probabilistic extremes tool, and thus the manually issued forecasts. 

Additional skill evaluation of the extremes tool is planned to be extended for Tmax, Alaska, and other 
percentiles and temperature values. Verification of the tool will also likely be performed on forecasts 
produced by the calibrated versus uncalibrated GEFS reforecast tool and impacts associated with the 
relationship of spread to skill. Global or other regional verification may also be done by other members of 
CPC, such as to evaluate the ability to use this tool to support the global tropical hazards forecasts, as well as 
external users. 
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1. Introduction 

 According to the 5th assessment report from the Intergovernmental Panel on Climate Change (IPCC), 
annual Arctic sea ice extent (SIE) is very likely (90%-100% confident) to have decreased at a rate of 0.45 to 
0.51 million km2 per decade during the 1979-2012 period due to anthropogenic influences (Vaughan et al. 
2013) leading to projections of an ice free Arctic by the 2030’s (Wang and Overland 2012).  On a seasonal 
time scale, accurate sea ice prediction is important for oil and shipping interests, wildlife protection, and 
ecosystems management.  Changes in sea ice can also influence atmospheric variability.  For example, it has 
been observed that because Arctic sea ice melt decreases the albedo, which exacerbates the warming, there 
has been a faster rate of warming in the Arctic than in the lower latitudes (Kumar et al. 2010; Screen and 
Simmonds 2010).  Some studies (Francis and Varvus 2012; Liu et al. 2012) have proposed this polar 
amplification in the warming trend as a mechanism for changes in the geopotential height structure and upper 
level jet stream pattern, which are then linked to more extreme weather events across the globe. 

Blanchard-Wrigglesworth et al. (2011) and Wang et al. (2013) demonstrated that Arctic sea ice cover is 
potentially predictable beyond 9 months using the Community Climate System Model version 4 (CCSM4) 
and Climate Forecast System Version 2 (CFSv2) respectively.   However, assessments also show small actual 
predictive skill for sea ice beyond 2-3 months (Merryfield et al. 2013; Wang et al. 2013).  The difference 
between potential predictability and actual skill raises interesting questions for possible causes, for example, 
errors in the initialization of sea ice thickness.  Wang et al. (2013) show that changes in sea ice thickness 
during the spring months had a large impact on forecasts of September SIE using CFSv2, with thickness 
increases resulting in higher SIE forecasts and vice versa, which agreed with observations.  Low March 2007 
sea ice thickness anomalies were cited by Kauker et al. (2009) as a factor leading to the record low sea ice 
cover the following September.  Therefore, because sea ice thickness is argued to be an important predictor to 
forecast September sea ice cover, it is plausible that an improvement in the initial condition sea ice thickness 
dataset used in models could yield an improvement in September sea ice forecasts, even those initialized in 
the spring, narrowing the gap between prediction skill and potential predictability.  However, before modeling 
experiments are carried out, this work aims to simply test the relationship between lagged sea ice thickness 
from two different datasets and September sea ice cover to assess the feasibility of such experiments. 

2. Data and methods 

Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) monthly averaged sea ice thickness 
data (Zhang and Rothrock 2003) from the Polar Science Center at the University of Washington were used, in 
addition to Climate Forecast System Reanalysis (CFSR; Saha et al. 2010) sea ice thickness data from the 
National Centers of Environmental Prediction (NCEP).  Sea ice components in both PIOMAS and CFSR 
assimilate satellite measurements of sea ice concentration.  Sea ice thickness is derived from internal 
dynamics and thermodynamics without assimilating observed thickness information.  Both CFSR and 
PIOMAS data were interpolated to 0.5° x 0.5° Arctic grid spacing.  Separate time series of Arctic sea ice 
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volume (SIV) for each month of the period 1982-2013 were created for each dataset by multiplying the sea 
ice thickness of each grid cell by the respective grid cell area and taking a sum across the northern hemisphere.  

First it is shown that PIOMAS sea ice thicknesses are more accurate in both magnitude and trend than 
CFSR data with respect to Ice, Cloud, and land Elevation Satellite (ICESat) data.  Then, 2nd order polynomial 
detrended, lagged PIOMAS and CFSR SIV were temporally correlated with a common dataset of September 
SIE and sea ice area (SIA) from the National Snow and Ice Data Center which was generated with the 
National Aeronautics and Space Administration (NASA) Team Sea Ice Algorithm based on satellite 
observations (Cavalieri and Gloersen 1984), and also interpolated to a 0.5° x 0.5° grid (native NASA Team 
grid spacing is 25 km).  The NASA Team observations have a region close to the pole that cannot be 
observed due to the orbit inclination of the satellites.  This area, known as the polar hole, is removed from all 
datasets for a concise evaluation.  Following the IPCC report (Vaughan et al. 2013), SIE is defined as the 
region encompassed by the edge of sea ice, represented by a concentration of at least 15%.  Because of this, 
regions with small gaps in the sea ice with a concentration still greater than the 15% threshold are still 
counted as part of the SIE.  SIA is different, as these gaps between sea ice are not included.  For this reason 
SIE is always greater than SIA.  In this analysis, Arctic SIE was computed by taking the cumulative sum 
across the northern hemisphere of the area of each grid cell with a sea ice concentration at or above 15%.  SIA 
was calculated by multiplying the sea ice concentration in each grid cell by the area of the respective grid cell 
and taking a northern hemisphere sum of the results for grid cells with a sea ice concentration at or greater 
than 15%. 

Temporal correlations were also computed on a grid point scale, using only monthly sea ice thickness and 
September sea ice concentration values at individual grid cells with the idea that regional patterns could exist 
that cannot be explained by a single hemispheric parameter like SIE or SIA.  To assess the significance of the 
differences between the correlations, the Steiger’s Z test (Steiger 1980) was employed.  The test takes into 
account the number of data points as well as the correlation between the two datasets being compared, in this 
case PIOMAS and CFSR sea ice thicknesses. Because of the small size of the dataset, significance is based on 
an 80% confidence interval, rather than the more traditional 95%. 

3. ICESat volume comparison 

SIV is difficult to evaluate due to a lack of uniform observations.  However, ICESat was able to provide 
measurements of ice thickness using a laser altimeter (Schultz et al. 2005).  The satellite had an acquisition 
period each spring 2004-2008 covering roughly 35 days each, which vary slightly in their exact coverage 
dates.  There is also a set of autumn retrievals, but because this study is concerned with prediction of 
September sea ice, the spring acquisition periods were of particular interest to us.  For each period, from the 
sea ice thickness retrieved by the satellite (available from http://rkwok.jpl.nasa.gov/icesat), total SIV was 
calculated in the same manner as it was for PIOMAS and CFSR.  The same interpolation and common mask 
described in the previous section was used and no detrending was applied as the time period was too short to 
establish any coherent trend.  The ICESat data were compared with daily PIOMAS and CFSR data which 
were averaged to match the exact dates of the ICESat acquisition periods.  Only PIOMAS and CFSR data 
within the ICESat domain were considered for this comparison.  Figure 1 illustrates the comparison of spatial 
sea ice thickness and hemispheric SIV between the ICESat data and the two modeled datasets.  Averaging 
over the spring acquisition periods, ICESat sea ice thickness patterns were closer to PIOMAS sea ice 
thickness patterns than to CFSR sea ice thickness patterns (Figure 1a-c).   It is also apparent from Figure 1d 
that the ICESat SIV trends are more in line with PIOMAS trends than with CFSR trends.  Root mean square 
errors (RMSE) relative to ICESat SIV were 2143 km3 and 825 km3 for CFSR and PIOMAS SIVs 
respectively. 

4. Correlation between September sea ice cover and lagged sea ice thickness 

Using detrended monthly data, no significant differences were seen in the performance of PIOMAS and 
CFSR when hemispheric scale SIV was correlated with September SIE and SIA over the period.  However, 
using PIOMAS SIV showed a slightly stronger relationship with September SIA at a 1-3 month lead.   
Changes were more apparent on a grid point scale as there was a larger region that showed significant 
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increases in correlation at an 80% confidence interval than decreased skill at all lead times except zero.   The 
area of the region with significant increases versus that with significant decreases are shown under each panel 
of Figure 2 and plotted as a function of lag month in panel h to further convey this point.   Positive differences 
between increases and decreases were highest for -2 to -4 months lag (correlating May, June, or July sea ice 
thickness to September sea ice concentration, Figure 2c-e).   Even for a lag of -6 months (March sea ice 
thickness, Figure 2g), increases were prevalent suggesting improvements could still be obtained out to 6 
months.  

5.  Summary and conclusion 

An assessment of the potential usefulness of PIOMAS SIV to improve the predictability of Arctic SIE 
and SIA in September was conducted using detrended lagged correlations.  The same geographical masks 

Fig. 1  Mean sea ice thickness throughout the five ICESat spring acquisition periods.  Daily CFSR (panel 
a) and PIOMAS (panel b) data used to exactly match ICESat (panel c) periods.   Panel d shows mean 
February-March SIV from CFSR and PIOMAS for 1982-2013 with the ICESat volume for the five 
acquisition periods plotted where applicable (Only grid cells common to the three datasets are used 
in the calculation of SIV). 
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were applied to all datasets to ensure consistency.  Comparison with ICESat as an observational benchmark 
for SIV yielded PIOMAS as a more realistic dataset (within the limitation that the assessment was based on 
only 5 data points in time).   We show that although little improvements were seen in correlating September 
SIE and SIA using PIOMAS SIV as opposed to CFSR SIV, significant improvements were seen when grid 
cell scale ice thickness and concentration were looked at.  The area with significant improvements was larger 
than the area with significant decrease in skill in all lag months except the initial month for 80% confidence.  
The increase was most pronounced for correlations of May, June, and July sea ice thicknesses with the 
following September sea ice concentration in which the area of increase exceeded the area of decrease by a 
factor of near or greater than 2, which is important as this period was previously labeled as having a low 
predictability of September ice cover. 

Because of the stronger relationship between the PIOMAS data and NASA Team observations, in 
addition to being more realistic as seen through comparisons with ICESat, it is plausible that utilization of 
PIOMAS sea ice thickness data could aid in improving prediction of September sea ice coverage, especially 
in the preceding June, but also as early as March.   We are in the process of doing forecast experiments with 
the CFSv2 initialized using PIOMAS initial sea ice thickness as opposed to CFSR sea ice thickness, with the 
goal of producing a better sea ice forecast. 

Fig. 2  Significant changes in correlation at 80% confidence that result from using PIOMAS lagged sea ice 
thickness to correlate with September sea ice concentration from NASA Team relative to using CFSR 
sea ice thickness.  Red shading represents locations with a significant increase in skill using PIOMAS 
and blue signifies locations with a significant decrease in skill.  Numbers at the bottom of each plot 
denote the area (106 km2) of each colored region.  Panels a through g are for 0 to -6 lag months.  Panel 
h is a time series showing the area encompassed by each color (y-axis) as a function of lag month (x-
axis). 
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ABSTRACT 

 The 2013–2014 California drought was initiated by an anomalous high-amplitude ridge system. The 
anomalous ridge was investigated by Wang et al. (2014) using reanalysis data and the Community Earth 
System Model (CESM).  Analysis from observational data (NCEP/NCAR Reanalysis) showed that the ridge 
emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer 
and subsequently intensified into winter (Fig. 1). The ridge generated a surge of wave energy downwind and 
deepened further the trough over the northeast U.S., forming a dipole. The wavelength of this dipole is rather 
large (at zonal wave numbers 1-2 scale) surpassing the common short-wave patterns (zonal wave #4-6) 

accompanying heat waves 
and stormy weather (Chang 
and Wallace, 1987; Screen 
and Simmonds, 2014; Teng 
et al., 2013; Wang et al., 
2013a). This long-wave 
feature of the dipole 
suggests a closer link with 
SST teleconnection from 
the tropical Pacific 
(Wallace and Gutzler, 1981), 
rather than with the higher-
latitude forcing that tends to 
produce shorter waves 
(Branstator, 2002).  

Furthermore, the study 
of Wang et al. (2014) 
indicated that the dipole and 
associated circulation 
pattern is not linked directly 
with either El Niño–
Southern Oscillation 
(ENSO) or Pacific Decadal 
Oscillation. Instead, it is 
correlated with a type of 
ENSO precursor, one that 
has a predominant signal in 
the Western North Pacific 
(WNP) and this dynamical 
linkage has intensified in 
recent decades (Wang et al., 

Fig. 1  NDJ 2013-14 anomalies of geopotential height (red contours) and OLR 
(color shadings) overlaid with the wave activity fluxes (vectors) for a three-
month period from June-August to November-January as indicated, 
computed from the levels of (a) 850 hPa and (b) 250 hPa.  Contour interval 
is 25 m for 850 hPa and 50 m for 250 hPa; the zero and the first positive 
and negative contours are omitted. 
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2013b). The variance of the dipole has increased, while the connection between the dipole and ENSO 
precursor has become stronger since the 1970s; this is attributed to increased greenhouse gas loading as 
simulated by the CESM (Fig. 2). As further verification, a recent study (Wang et al., 2015) using 17 models 
from the Coupled Model Intercomparison Project Phase 5 (CMIP5) found that most models capture the 
midlatitude circulation dipole, its association with El Niño precursor, and its intensification under 
anthropogenic greenhouse gas forcing (Fig. 3). Therefore, there is a traceable anthropogenic warming 
footprint in the enormous intensity of the anomalous ridge during winter 2013–2014 and the associated 
drought.   
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Fig. 2  (a) Running variance of the dipole index (x 104 m2) with a 30-year window plotted at the end year 
beginning in 1900, derived from the 20CR (black), CESM1-GHG run (red) and CESM1-NAT run (blue).  
(b) Sliding correlations between the dipole index and Niño4 (Y+1) within a 30-year window 
corresponding to (a).  The dashed line indicates significance at the 99% level. 

Fig. 3  Moving variance of the dipole index (see text) over a 
30-year running window, plotted at the end year, for the 
ensemble of different experiments as indicated by the 
legend.  Error bars indicate model spread from all 
members and all models.  The dipole index was 
normalized (between -2 and 2) prior to computing the 
variance. 
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What caused the North America climate anomalies in 2013/14 winter?  
Peitao Peng, Arun Kumar, Mingyue Chen, and Bhaskar Jha 

  Climate Prediction Center, NCEP/NWS/NOAA 

North America experienced severe 
climate anomalies in the winter season of 
2013/14.  The anomalies are characterized 
with recorded warm and draught in west 
coast and extremely cold in the middle and 
east (Fig. 1).  The associated circulation 
anomalies had a ridge off the west coast and 
a trough over the inner part of the land, 
representing a skewed polar vortex towards 
NA region (Fig. 2).  In this study, we 
analyzed possible causes for the anomalies 
with both statistical and dynamical tools and 
AGCM simulations.  It is found that in the 
observation, the seasonal mean circulation 
anomalies over North America was a part of 
wave train propagated from the jet exit 
region over the North Pacific (Fig. 2) . The 
lack of Gill-type heating-circulation in lower 
latitudes, however, suggests that the wave 
train may not be directly forced by tropical 
heating for the whole season.  A further 
examination of monthly mean data suggests 
that the wave train was likely initiated by 
tropical heating in December and maintained 
by internal dynamics in following three 
months (Fig. 3).  On the other hand, a set of 
AMIP-type experiments successfully 
simulated the climate anomalies in North 
America for the winter season.  Diagnostics 
showed that the corresponding circulation 
anomalies in the model were forced by 
tropical SST.  Major differences in 
circulation anomalies between model and 
observation are in lower latitudes, where 
model circulation matches well with tropical 
heating in Gill-type relationship.  In order to 
see the possibility that a 4-month persistence of circulation over North America could happen without 
persistent external forcing, we conducted a pattern persistence analysis with the monthly mean data from 
reanalysis and the ensemble AMIP-type simulation data.  It is found that 4-month or longer circulation 
persistence in that region could occur in ENSO-neutral winters, though with minor probability.  In addition, 
contribution from recent climate trend is also analyzed.  

Fig. 1  Standardized seasonal mean precipitation and 2-meter 
temperature anomalies of 2013/14 winter (Dec-Jan-Feb-
Mar).  The unit is the standard deviation of the seasonal 
mean anomalies over the period of 1981-2010. 
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Fig. 2  200 hPa stream function anomaly (contours), wave-activity fluxes (arrows) and their divergence 
(shadings) for DJFM mean of 2013/14 winter.  Units: 106 m2 s-1 for stream function, m2s-2 for wave 
activity fluxes, and m s-2 for divergence of wave-activity fluxes. 

 

Fig. 3 Left column: Observed 
200 hPa stream function 
(contours) and precipitation 
rate anomalies (shadings) for 
individual months of 
2013/14 winter.  Right 
column: Linear model 
response to tropical 
divergence (shadings) in a 
linear model with 200 hPa 
climatological basic state of 
the month.  The divergence 
anomalies are specified with 
the same patterns of the 
precipitation rate in 
equatorial region.  Units: 106 
m2s-1 for stream function, 
mm/day for precipitation 
rate, and 10-6 s-1 for 
divergence anomalies. 
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Probabilistic Forecasting with NMME  

Emily J. Becker, Huug van den Dool, and Qin Zhang 
  Climate Prediction Center, NCEP/NWS/NOAA 

 The North American Multi-Model 
Ensemble (NMME, http://www.cpc. 
ncep.noaa.gov/products/NMME/) 
forecasting system has been 
continuously producing seasonal 
forecasts since August, 2011. The 
NMME, with its suite of diverse models, 
provides a valuable opportunity for 
characterizing forecast confidence using 
probabilistic forecasts. The realtime 
forecasts have become an important tool 
for NOAA Climate Prediction Center 
seasonal forecasters, as well as many 
others. This study will serve as a 
baseline assessment before a series of 
improvements are attempted for the 
forecast construction method.  

The current experimental 
probabilistic forecast product (in map 
format, Fig. 1) presents the most likely 
tercile for the monthly mean value, 

chosen out of “above normal”, “near normal”, or 
“below normal”, using a non-parametric counting 
method to determine the probability of each class. 

A first-order bias correction is applied when the 
hindcast based local model climatology is removed 
(for each model separately) and replaced with the 
climatology from observations.  A 2nd order bias 
correction is applied when forecasts are expressed in 
terciles derived from model hindcast data.  

This study assesses the skill of the current 
method used to produce NMME realtime 
probabilistic forecasts using 29 years of cross-
validated hindcasts. Probabilistic forecasts from a 6-
model NMME, the full, 24-member CFSv2, a mini-
NMME (4 members from each of 6 models), and a 
mini-CFS (6 members) are assessed using the Brier 
Skill Score (BSS), and the anomaly correlation of 
deterministic forecasts is included for comparison 

Fig. 1  Real-time 2 m surface temperature probabilistic forecast for 
March, 2014. 

A N B AC
NMME 0.61 0.25 0.58 0.89
mini-NMME 0.60 0.24 0.59 0.89
CFS 0.45 0.05 0.43 0.82
6-mem CFS 0.41 -0.02 0.41 0.81

 a. SST Niño 3.4 Region

Table 1  Brier skill scores (BSS) and anomaly 
correlation coefficients (AC) for lead-1 forecasts 
from the NMME and CFSv2 of sea-surface 
temperature in the Niño3.4 region. Columns show 
BSS for forecasts in the above- (A), below- (B), 
and near-normal (N) categories; the last column is 
AC. Values are averaged over all 12 initial 
condition lead-1 forecasts. “Lead-1” seasonal 
forecast is for the first complete 3-month period 
following the initial month: for example, from 
June initial conditions, the lead-one seasonal 
forecast is for the July-August-September period. 
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(Table 1). The hindcast assessment is employed due to the relatively short time that real-time probabilistic 
forecasts have been issued (less than two years.)  

We also employ reliability diagrams, which allow for visual comparison of the conditional event 
frequency and the forecast probability; the associated “sharpness diagrams” indicate how often a given 
probability bin is used in the forecast. The “event” is an observation falling in a particular tercile. Probability 
forecasts are assigned to one of 10 bins (0 – 0.1, etc.). Reliability diagrams show the aggregated results for the 
lead-1 through lead-5 seasons (Fig. 2). 

For all of the areas and fields (2 m land-only surface air temperature in the northern hemisphere, sea 
surface temperature in the Niño3.4 region and the extratropical northern hemisphere, and precipitation in the 
tropics) BSS for NMME forecasts are higher than those of CFSv2 forecasts. Forecasts in the near-normal 
tercile are near or below zero for all fields except sea surface temperature in the Niño3.4 region; BSS of the 
near-normal tercile is nevertheless much lower than the above and below categories. This preliminary study 
lends confidence that the NMME probabilistic forecasts, even as-is, provide value beyond that of the CFSv2 
alone. The NMME benefits from both a higher number of ensemble members and model diversity. Further 
study is required to assess the sources of improved skill in the various fields and regions. 

This work has been submitted to the Journal of Climate and is currently under review. 

 

Fig. 2  Reliability diagrams for probabilistic forecasts of sea-surface temperature (SST) in the Niño3.4 
region (190°E - 240°E, 5°S – 5°N) for the NMME (top L), mini-NMME (top R), CFS (lower L), and 
mini-CFS (lower R). Red lines indicate forecasts in the “above” tercile, blue the “below”, and brown 
the “near-neutral”. Lines closer to the black diagonal mean the observed event frequency (y-axis) is 
close to the forecast probability (x-axis), and therefore the forecasts are more reliable. Histograms 
indicate how often each forecast bin is used; numbering on the y-axis has been divided by 1000. All 
diagrams use 10 bins of size 0.1. 
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1. Introduction 

 Weather forecasting in the short range and long range has improved dramatically over the years 
(Anderson et al. 1999; Barnston et al. 2005; Lupo and Market, 2002, 2003). Weather forecasts in the short 
range are routinely issued for as long as seven to ten days. Long range forecasts are routinely issued at least 
one month to more than a year in advance. Short range forecasting is an initial value problem, which is 
performed within the framework of the primitive equations, whether these are made observationally, or with 
the aid of numerical models. Long range forecasting relies on a variety of methods, but are generally 
constructed using statistical methods, and is considered a boundary value problem. The methods used can be 
persistence, model of the day, contingency, analogues, or using more sophisticated statistical methodologies. 
There are medium range products available through the cooperation between the National Weather Service 
(NWS) regional and local offices and the Climate Prediction Center (CPC) in the range of 8 – 14 days 
(http://www.cpc.ncep.noaa.gov/products/predictions/814day/interactive/index.php). However, there are few 
products available that provide forecasts in the 6 – 30 day range, especially beyond 14 days, which is 
considered the dynamical limit for weather forecasting based on the size and rotation rate of the planet as well 
as the gasses that make up our atmosphere. 

The Bering Sea (BSR) and Typhoon (TR) rules are two observations used by weather forecasters. The 
former was introduced in 2011, while the latter has been used since at least the 1940s and are based on the 
idea of teleconnectivity within the Pacific Ocean region which was defined statistically by Wallace and 
Gutzler (1981). For example, the Pacific North American (PNA) pattern will be associated with alternating 
trough-ridge patterns from the Central Pacific to the East Coast of the US. A ridge-trough pattern from west 
to east over the US is a positive PNA configuration, while the opposite pattern is negative. Teleconnection is 
thought to be the result of downstream propagation of Rossby Wave activity in the North and South Pacific 
basins (e.g., Renwick and Revell, 1999; Wang et al. 2011, and references therein). The Bering Sea region is 
close to one teleconnective centers in the PNA pattern, which should make these rules useful indicators of 
weather downstream. 

 Atmospheric blocking, which generally persists for 7-10 day has also been associated with downstream 
influence on North America’s weather (e.g. Quiroz, 1984; Wiedenmann et al. 2002). Blocking can have a 
substantial impact on the conditions over a region for an entire month or even a season as many researchers 
have demonstrated (e.g., Lupo et al. 2014). Birk et al. (2010) demonstrated the influence of sea surface 
temperatures associated with El Niño and Southern Oscillation (ENSO) will be influential on the predominant 
temperature and precipitation regimes of the central USA, and that these are modified by longer term 
variability such as the Pacific Decadal Oscillation. Blocking is generally associated with troughing over the 
middle part of the USA, and a dramatic recent example occurred during November, 2014. Thus, the goal of 
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this research is to develop statistical tools based on the BSR and/or the TR that demonstrate their value and 
are better than climatology for prediction in the period of 6 to 30 days. 

2. Data and methodology 

a. data 

The data used for this project come from a variety of sources, however the general source of this 
information is through the National Oceanic and Atmospheric Administration (NOAA), including the 
National Centers for Environmental Prediction / National Centers for Atmospheric Research (NCEP/NCAR) 
re-analyses (500 hPa heights) and the National Climactic and Data Center (NCDC) climatic information 
(climatological normals), and the Weather Underground (www.wunderground.com) for surface information. 

b. Methods and definitions  

The forecast verification method was based on the methods used by Lupo and Market (2003), and can be 
described generally as a skill score. In that paper, skill was measured using the formula:   

Skill = (Forecast – Base) / (Verification – Base).                                                               (1)    

For example, in their work, which was originated by Thornes and Proctor (1999), they converted actual 
temperature information into a point system for use in Eqn. (1), where a forecast within +/- 2o F of the 
observed was considered perfect (2 points), and a forecast within +/-2 to +/-4o F was given 1 point, and 0 was 
given to forecasts outside the 4o F range. Here we modified this score system by awarding two, one, and zero 
point(s), respectively, for a forecast that was within one, two, or more than two seasonal standard deviation(s) 
(2σ), respectively away from observations. 

A quick analysis demonstrated that the scores for the BSR, TR, and climatology were similar for the 
entire study period as well as within each season. Each method produced a similar number of perfect forecasts 
(two points) and busted forecasts (zero points). It is apparent that climatology would be difficult to improve 
upon, since the climatology in theory would result in a normal distribution, or a theoretical score of 1.63. 
However, anecdotal evidence indicated that the BSR and TR performed well when the temperatures were 
greater than 2σ from the normal.  Scoring long range forecasts based on skill may not be the right way to 
show value, since climatology would be difficult to improve upon using statistical methods. This, however, 
does not preclude improvement via dynamical forecasting.  Additionally, forecasts that involved 1 point 
scored can be considered partial successes and there were more contingencies that would fit into this type of 
analysis. 

In this study, a methodology usually used by the National Weather Service and others in short range 
forecasting and severe weather was borrowed, which is based on a contingency table for events forecast and 
observed (e.g., http://www.nws.noaa.gov/mdl/scan/test2/awipssvr.htm) (Table 1). Using this methodology 
will allow the scoring of the BSR and TR independent of climatology, and demonstrate value in abnormal 
(2σ) weather conditions. Here we will calculate success / probability of detection (POD – X / (X+Y)), false 
alarm rate (FAR – Z / (X +Z)), success ratio (SRO – X / (X+Z)), critical success (CSI – X / (X + Y + Z)), 
correct negatives (CRN –  W / (W+ Y)), failures (FFR – Y / (W + Y)), and bias (BIAS – (X+Z) / (X + Y)).  

The definitions for blocking follow those used in 
Wiedenmann et al. (2002), and the definitions for the 
teleconnections examined are consistent with the work 
of Wallace and Gutzler (1981) or definitions found on 
the NWS and CPC websites. Here we examined the 
East (West) Pacific Oscillations (EPO(WPO)), the North 
Pacific Oscillation (NPO), the PNA, the North Atlatnic 
Oscillation (NAO), and the Arctic Oscillation (AO). The 
blocking occurrences were obtained from http://weather.missouri.edu/gcc. All statistics were tested using 
standard methods, which can be found in any elementary statistics text book. 

Observed (below) / Forecast (right) Yes No 

Yes X Y 

No Z W 

Table 1  The contingency table for BSR and TR 
forecasts of 2σ events and observations. 

http://weather.missouri.edu/gcc
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3. Analysis and results 

a. The Bering Sea and typhoon rules 

In order to examine the BSR and TR, forecasts 
were made in the 17-21 day time period. These results 
demonstrate that the BSR and TR performed similarly 
to climatology during 2013 and 2014 (not shown). 
Thus, to examine the value of the BSR and TR during 
extreme events independent of climatology, the 
method in Table 1 was used, where X is the number of 
events were forecast correctly and occurred (two 
points), and Y is the number of events not forecast, but 
did occur (zero points). The value Z is the number of 
forecasted events that did not occur (0 points), and W 
the number of events that did not occur, but not 
forecast (two points). These results are shown in 
Tables 2 and 3.   

 The results demonstrated that the TR in general 
was more successful than the BSR, but both showed 
some success in forecasting 2σ events. Both the TR 
and BSR showed good scores for POD, CRN, but the 
BSR showed significantly less success in SRO and 
CSI.  The TR showed low scores in FRA and FFR, and 
showed little bias in the forecasts, whereas BSR was higher in all these negative indicators. In the future this 
group will continue to track the progress of these forecasts in order to acquire a larger data set. Also, it would 
be desirable to identify an objective method for discerning those conditions that presage the effective use of 
the BSR and TR. 

b. Blocking 

All blocking events in the Pacific Region 
(140o E – 100o W) and Atlantic Region (80oW 
– 40o E) were compared over a three year 
from Sept 2011 – Aug. 2014 period with 
various teleconnection indexes and the 
monthly temperature and precipitation 
anomalies. The results of this preliminary 
study are shown in Table 4. Pacific (Atlantic) 
region blocking correlated strongly with the 
Pacific (Atlantic) Basin teleconnection 
patterns as expected. Pacific region blocking 
also correlated strongly with central US 
temperature and precipitation anomalies, 
although the temperature correlation was 
stronger. This might be expected as 
precipitation anomalies can be influenced by 
more localized factors as well as large-scale 
flow regimes. In general, Pacific Region 
blocking correlated with cooler and drier 
conditions. Atlantic Region blocking 
correlated with only the temperature. The 
correlation with colder temperatures is 
especially marked in the cold season. 

Observed (below) / Forecast (right) Yes No 

Yes 5 (10) 3 (3) 

No 7 (4) 5 (9) 

Index BSR TR 

POD 62.5 76.9 

FAR 58.3 28.6 

SRO 41.7 71.4 

CSI 33.3 58.8 

CRN 62.5 75.0 

FFR 38.5 25.0 

BIAS 150.0 107.7 

Teleconnectivity Correlation 

At 99% confidence level 

East Pacific Oscillation -0.60 

West Pacific Oscillation -0.60 

Midwest monthly temperature anomaly -0.45 

At 95% confidence level 

Pacific North American -0.42 

North Pacific 0.42 

North Atlantic Oscillation* -0.39 

At 90% confidence level 

Arctic Oscillation* -0.33 

Midwest monthly temperature anomaly* -0.35 

Midwest monthly precipitation anomaly -0.30 

Table 4  The correlation between Pacific (*Atlantic) blocking 
occurrences and days to teleconnectivity influencing 
Midwest region temperatures and/ or precipitation. 

 

Table 2  As in Table 1, except for the outcome of 
BSR (TR) forecasts. 

Table 3  The calculated indexes from section 2 for 
the BSR and TR expresses as a percentage (times 
100). 
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 The strong Pacific Blocking event of early to mid-November 2014 was encouraging forecasts of a cooler 
than normal November within the first ten days of the month. Even one month before, the 30 day outlook 
projected a warmer than normal November for the far Northern Tier of states 
(http://www.cpc.ncep.noaa.gov/products/archives/long_lead/llarc.php). This blocking event was not foreseen, 
but was the result of the development of Super Typhoon Nuri in the west Pacific. Nuri became extratropical, 
and deepened to about 924 hPa, which is the strongest North Pacific extratropical cyclone on record. This 
cyclone strengthened a weak blocking event, that forced strong troughing over North America during the 
week of November 10th. 

4. Conclusions 

This study examined the utility of the BSR and TR for extended outlooks in the 6 – 30 day time frame. 
Data from NOAA and CPC were used primarily. The results of this study are preliminary and further study 
will be done in order to develop usable forecasting tools and a larger data base for performance statistics.  

Examining the skill for the BSR and TR over the period the results demonstrate initially that both were 
consistent with climatology and did not show skill in the classic sense. However, a cursory examination 
demonstrated that both were able to forecast time periods when the temperatures were greater than two 
standard deviations from the mean. Thus, a contingency analysis typically used in synoptic and mesoscale 
meteorology was used in order to test the efficacy of each method for the detection of extreme events. Both 
methods demonstrated utility in identifying these periods, however the TR was consistently high (low) in 
those measures associated with positive (negative) performance, and showed small biases. The BSR scored 
high in false alarm rate as well as displaying more bias.  

As expected, blocking in the North Pacific and Atlantic blocking correlated strongly with teleconnections 
in their respective ocean basins over a three year period of study. While Atlantic region blocking is correlated 
to central USA monthly temperature anomalies, Pacific region blocking correlated more strongly, and even 
correlated to monthly precipitation anomalies. As blocking is very difficult to forecast more than a day or two 
in advance (e.g., Wiedenmann et al., 2002), these events can result in monthly forecasts that are busted by 
their occurrence as evidenced by November 2014, which showed a forecast of normal to warm conditions. 
Strong blocking in the early part of the month led to a strong cold wave in the central USA for the last two-
thirds of the month. 
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Influence of ENSO SSTs on the Spread of the Probability Density Function 
for Precipitation and Surface Temperature 
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ABSTRACT 

The impact of the interannual variations in ENSO SSTs on the spread of probability density function 
(PDF) for the seasonal mean of variables of societal relevance are analyzed based on a large set of the 
hindcasts from NCEP CFSv2. The study is focused on the analysis of rainfall and 2-meter temperature (T2m) 
for December-January-February (DJF) seasonal mean. 

 

Fig. 1 Left column: Spatial patterns of the linear regression between Niño 3.4 SST index and the DJF seasonal 
mean rainfall from observation (top), the model forecasted ensemble mean (middle), and the model 
forecasted ensemble spread (bottom). The unit is mm/day per degree K of Niño 3.4 SST. Right column: 
The same as the left column but for T2m. The unit is degree K per degree K of the Niño 3.4 SST index. 
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For rainfall, the spatial distribution of the ENSO SSTs induced changes on the spread of PDF strongly 
resembles changes in the mean but with smaller amplitude. Over the central-eastern equatorial Pacific, 
changes in the spread lead to a reduction in signal-to-noise ratio (SNR) during El Niño years while to an 
increase in the SNR during La Niña years. Over extratropics, year to year changes in the spread are relatively 
small. For T2m, the changes in spread have little systematic dependence on the ENSO SSTs and the 
amplitudes of the changes in spread are much smaller than corresponding changes in the ensemble mean. 

The results demonstrate small systematic year to year variations in the PDF spread, for example over 
extratropics for rainfall and over most of global areas for T2m, and indicate that it might be a good practice in 
seasonal predictions to assume that the spread of seasonal means from year to year is constant and the skill in 
seasonal forecast information resides primarily in the shift of the first moment of the seasonal mean of the 
PDF. 

This work has been published in Climate Dynamics in 2014. 
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ABSTRACT 

The Madden-Julian Oscillation (MJO) has been demonstrated to play a role in tropical cyclone (TC) 
activity around the globe in a number of recent studies.  While the impact of the MJO on TCs in the Atlantic 
basin since the mid-1970s has been well documented, a newly-developed 107-year long index for the MJO 
allows for additional analysis of the impacts of the MJO on Atlantic TC activity.  TC activity in the Atlantic 
increases when MJO-related convection is enhanced over Africa and the Indian Ocean while TC activity in 
the Atlantic is suppressed when the 
MJO enhances convection over the 
West Pacific.  This long-term record 
of the MJO also allows for the 
analysis of how the MJO's impacts 
may be modulated by other climate 
modes, such as the El Niño-
Southern Oscillation (ENSO) over 
interannual timescales (Figure 1) 
and the Atlantic Multi-decadal 
Oscillation (AMO) over 
multidecadal time scales (Figure 2).  
When climatologically unfavorable 
conditions such as an El Niño event 
or a negative AMO phase are 
present, even TC-favorable MJO 
conditions are not enough to 
generate statistically significant 
increases in TC activity from the 
long-term average across the 
Atlantic basin.  However, 
climatologically favorable 
conditions during a La Niña event or 
a warm AMO phase act to enhance 
the modulation of TC activity over 
the Atlantic basin by the MJO.  

Fig. 1  Normalized ACE generated by each phase of the MJO for La 
Niña events (blue bars) and El Niño events (red bars). Statistically 
significant results are highlighted by vertical striping. 
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This work is currently in press for 
Journal of Climate.  It can be downloaded 
at: 
http://journals.ametsoc.org/doi/pdf/10.1175/
JCLI-D-14-00509.1. 
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Fig. 2  As in Figure 1 but for positive AMO years (red bars) 
and negative AMO years (blue bars). 
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ABSTRACT 

This work examines the impact of El 
Niño-Southern Oscillation (ENSO) on 
prediction skill of North Pacific variability 
(NPV) in retrospective predictions of the 
NCEP Climate Forecast System version 2.  It 
is noted that the phase relationship between 
ENSO and NPV in initial condition (IC) 
affects the prediction skill of NPV. For the 
average of lead times of 0-6 months, the 
prediction skills of sea surface temperature 
anomalies (SSTA) in NPV (averaged SSTA 
in (30°-50°N, 150°E-150°W) is defined as 
the NPV index) increase from 0.42 to 0.63 
from the cases of out-of-phase relation 
between the Niño3.4 and NPV indices in IC 
to the cases of in-phase relation (Fig. 1). 
Here, the in-phase (out-of-phase) variations 
of ENSO and NPV are referred to as SSTA 
having opposite (same) sign for Niño3.4 and 
NPV indices. It is suggested that when 
ENSO and NPV are in-phase in IC, ENSO 
plays a constructive role in the NPV 
development and enhances its signals. The 
physical coherence between North Pacific 
and the tropical central and eastern Pacific 
favors the model to consistently predict the 
anomaly in North Pacific. The situation is 
opposite when they are out-of-phase in IC. 
The ENSO may be disruptive to the NPV 
anomalies and, as a result, the intra-ensemble 
perturbations become more dominant. 

Fig. 1  Dependence of prediction skills of CFSv2 predicted 
NPV index with IC in January 1982-December 2010 on 
lead time and phase relationship between Niño3.4 and 
NPV indices. Red (blue) bars represent the prediction 
skills of NPV index for in-phase (out-of-phase) variations 
between Niño3.4 and NPV indices at IC. The most right-
hand bar is the average of the skill for 0-6 month lead. 
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Nevertheless, when ENSO and NPV 
are out-of-phase, some pronounced 
positive NPV events are still predictable 
(Fig. 2). In these cases, North Pacific is 
dominated by strong positive SSTA, 
which may overcome the influence from 
the tropical Pacific and displays 
predictability.  There are little predictive 
skills for negative SSTA and small 
positive SSTA when they are out-of-
phase. This asymmetry in the prediction 
skill may suggest that large positive and 
negative SSTA in N. Pacific may be 
associated with different physical 
processes. 

This work has been published in 
Journal of Climate in 2014. 
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Fig. 2  Scatter of CFSv2 predicted (y-axis) and OIv2 analyzed 
(x-axis) NPV index for the predictions of 0-6 month lead for 
all in-phase (a) and out-of-phase (b) variations between 
Niño3.4 and NPV indices in IC in January 1982-December 
2010. The green rectangle box in (b) represents NPV index 
larger than 0.4°C in both OIv2 and CFSv2. 
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ABSTRACT 

A three-dimensional evolution of Madden–Julian oscillation (MJO) diabatic heating for October–March 
from satellite data is constructed: the heating propagates eastward for three cycles, modulated by the 
likelihood for a given MJO phase to occur on a given calendar day. This heating is added to the temperature 
tendencies of each member of an ensemble of 48 (1 October–31 March) simulations with the Community 
Earth System Model. 

The leading two most predictable modes of the planetary wave vertically integrated total (added plus 
model generated) heating capture 81% of the ensemble-mean variance and form an eastward-propagating 
oscillation with very high signal-to-noise ratio. The two most predictable modes of the extratropical Northern 
Hemisphere 200-hPa height form an oscillation, as do those of the 300-hPa height tendency due to synoptic 
vorticity flux convergence, the 200-hPa Rossby wave source, and the envelope transient kinetic energy. The 
North Atlantic Oscillation (NAO+) occurs 15–25 days after the MJO convection crosses the 90°E meridian 
(see Fig. 1 left panel), supported by synoptic vorticity flux convergence and a distinct pattern of Rossby wave 
source. 

The daily North Atlantic circulation anomalies are categorized into four circulation regimes with a cluster 

Fig. 1 Number of occurrences of NAO+ regime (red curve) and NAO- regime (green curve) in all ensemble 
members, as a function of day (see left-hand scale). Shading in left panel is the vertically integrated 
planetary wave diabatic heating synthesized from the leading two most predictable modes (W m−2, see 
color bar) as a function of longitude (see right-hand scale). Dotted (solid) curve in the right panel is the 
ensemble-averaged time series of the first (second) most predictable mode of the extratropical Northern 
Hemisphere 200 hPa height (see right-hand scale). Time series are normalized to unit variance. 
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analysis. The NAO+ and NAO− are equally likely in the control model runs, but the NAO+ is 10% more 
likely in the model runs with heating, compared to a difference of 14% in reanalyses. The daily occurrence of 
the NAO+ regime in the heating ensemble shows maxima at times when the leading two optimal modes of 
height also indicate NAO+ but also shows maxima at other times (see Fig. 1 right panel). 

This work has been published in Journal of the Atmospheric Sciences in 2015. 
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ABSTRACT 

The Eastern Pacific (EPAC) warm pool is a region of strong intraseasonal variability (ISV) during boreal 
summer. While the EPAC ISV is known to have large-scale impacts that shape the weather and climate in the 
region (e.g. tropical cyclones and local monsoon), simulating EPAC ISV is still a great challenge for the 
present day global weather and climate models. In the present study, the predictive skill and predictability of 
the EPAC ISV are explored in eight coupled model hindcasts from the Intraseasonal Variability Hindcast 
Experiment (ISVHE). Relative to the prediction skill for the boreal winter Madden-Julian Oscillation (MJO) 
in the ISVHE (~15-25 days), the skill for the EPAC ISV is considerably lower in most models with an 
average skill around 10 days. On the other hand, while the MJO exhibits a predictability of 35-45 days, the 
estimate of predictability for the EPAC ISV gives a 20-30 day range (Figure 1). The prediction skill was 
found to be higher when the hindcasts were initialized from the convective phase of the EPAC ISV as 
opposed to the subsidence phase. Higher prediction skill was also found to be associated with active MJO 
initial conditions over the Western Pacific (Figure 2, evident in 4 out of 8 models), signaling the importance 
of exploring the dynamic link between the 
MJO and the EPAC ISV. The results 
illustrate the possibility and need for 
improving our dynamical prediction 
systems to facilitate more accurate and 
longer-lead predictions of the EPAC ISV 
and associated weather and short-term 
climate variability.  

This work was published in Journal of 
Climate in 2014. 
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Fig. 1  Signal to noise ratio based estimates of prediction skill 
and predictability for EPAC ISV PC1 in the eight models 
(x-axis ). Average individual hindcast prediction skill 
estimates are shown as black bars and ensemble mean 
prediction skill estimates are shown as hatched bars. A +/-3 
day range for single member and ensemble mean estimates 
of predictability are represented by the tan and grey shaded 
areas respectively. 
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Fig. 2  Average prediction skill for EPAC ISV PC1 in the eight models for hindcasts initiated from 

active MJO conditions (RMM (Real-time Multivariate MJO indices, Wheeler and Hendon 2004) 
amplitude > 1.2) (red bars) and quiescent MJO conditions (RMM amplitude <0.8) (blue bars).  
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1. Introduction 

 The authors analyze the seasonal-interannual 
variations of precipitation over the Maritime 
Continent (MC) and their relationships with 
large-scale climate anomalies. They also 
investigate the predictability of MC precipitation 
variations. The hindcast of the National Centers 
for Environmental Prediction (NCEP) Climate 
Forecast System version 2 (CFSv2) and several 
analysis/reanalysis products are used.   

2. Results 

The seasonal evolution of MC precipitation does 
not apparently exhibit distinct features for four 
seasons. Instead, it is clearly characterized by a wet 
season (from December to March) and a dry season 
(from July to October) (Figs. 1 and 2). The 

Fig. 1 Observed monthly mean of MC 
precipitation (mm day-1, black line) and its 
standard deviations (shaded) from January to 
December. The MC domain can be seen 
from Fig. 2. The horizontal line denotes the 
annual average of MC precipitation. July-
October are defined as dry season and 
December-March as wet season. 

Fig. 2 Anomalies of observed precipitation (mm 
day-1, shading) and 850-hPa winds (m s-1, 
vectors) in (a) wet season (December-March) 
and (b) dry season (July-October). The 
domain used to define the MC is outlined 
with red boxes. The figure displays that 
during wet season rainfall maximizes near 
10S and during dry season rainfall band 
moves to around 15N. 
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  Fig. 4 (a) Coefficients of 
correlation between the 
CFS predicted SMB\EMC 
precipitation of different 
leads and observed 
SMB\EMC precipitation in 
wet season (black 
solid\dash line) and dry 
season (red solid\dash line). 
(b) Coefficients of 
correlation between the 
CFS predicted SMB\EMC 
precipitation and negative 
Niño-3.4 in wet season and 
dry season. The x-
coordinate indicates the 
corresponding lead months. 
Straight dotted lines denote 
the  95%  confidence  level.  

precipitation over MC for both wet 
and dry seasons is significantly 
related to El Niño–Southern 
Oscillation (ENSO) and large-scale 
Asian-Australian monsoon features. 
When ENSO signals are removed, the 
MC precipitation is more strongly 
related to the climate features over 
East Asia.  

The NCEP CFSv2 shows a high 
skill in predicting the main features of 
MC precipitation variations and their 
relationships with large-scale climate 
anomalies. It predicts the MC 
precipitation variation and its related 
circulation patterns skillfully in 
advance by several months, especially 
for the dry season (Fig. 3). The 
relatively low skill for wet season is 
contributed mainly from the low 
prediction skill of the precipitation 
over Sumatra, Malay, and Borneo 
(SMB), which is due partly to the 
unrealistically predicted relationship 
between the variations of SMB 
precipitation and ENSO in the wet 
season (Fig. 4).  

The figure clearly shows that, for dry season, predictions of precipitation and ENSO-precipitation relationship 
always have high skills. For wet season, however, high skills can only be found for the predictions of eastern MC 
precipitation and its relationship with ENSO. No skill can be seen for the predictions of SMB precipitation and its 
relationship with ENSO. 

Fig. 3 (a) Coefficients of correlation between the CFS predicted MC 
precipitation of different leads and observed MC precipitation in 
wet season (lines with solid circles) and dry season (lines with 
open circles). (b) Coefficients of correlation between the CFS 
predicted MC precipitation of different leads and observed MC 
precipitation for all months. The x-coordinate indicates the 
corresponding lead months. All values significantly exceed the 
95% confidence level in (a), and values significantly exceeding 
the 95% confidence level are shaded in (b). The figure shows that 
high skills of MC precipitation prediction are in the dry season 
and lower skills are in the wet season. 
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1. Introduction 

 Strong summer droughts over the Southern Great Plains region are often characterized by rapid 
intensification in the late-spring and early-summer. The decreased rainfall in these drought years are coupled 
with strong increases in summertime temperature extremes, as for example, was the case with the 2011 
drought over Texas and the Great Plains drought in 2012. Dynamic climate models failed to predict these 
summer droughts. This is largely due to model weaknesses in predicting summer rainfall, underestimating 
summer rainfall variance, and weaknesses in capturing soil moisture feedbacks. By contrast, climate models 
are more reliable in capturing the variability in large-scale circulation features and temperature during winter 
and spring. 

Observations show that severe-to-extreme summer drought events over Texas are preceded by dry springs. 
Over the period 1895-2014, there were 13 severe-to-exceptional droughts (defined as the 12-month 
Standardized Precipitation Index (SPI, a rainfall based drought index) for August ≤ -1.2) over Texas. Ninety 
two percent of these drought events were characterized by anomalously low rainfall in the spring (March 
through May). Dry springs cause anomalous high pressure systems and anticyclonic (clockwise) flow in the 
prevailing wind system, which lead to subsidence (sinking motion) in the atmosphere. Such subsidence 
persists through much of the summer and inhibits rainfall from convective (rising motion) processes.  This 
work explored the potential predictability of strong summer droughts, and the feasibility of using a process-
based empirical model to predict summer droughts, over the Southern Great Plains based on such persistent 
drought-inducing atmospheric circulation patterns and surface dryness in spring.    

2. Process-based empirical model for drought early warning 

We developed a process-based statistical model to provide an early warning indicator of summer 
(meteorological) drought based on the anomalous large-scale middle tropospheric (that is, 500 hectopascals 
level, or approximately 5,500 meters above sea level) circulation, convective inhibition energy (a numerical 
measure in meteorology indicating the negative energy available in the environment to prevent development 
of convective weather systems), and land surface moisture conditions in spring (March to May). We used the 
three aforementioned conditions in spring (March, April, and seasonal mean March through May conditions) 
as inputs to our statistical model to predict cumulative rainfall deficits or surplus (referred to as the 
cumulative rainfall anomalies hereinafter) during May-July and the six-month SPI for July. 

Comparison of the hindcasts made using the statistical model with the observations shows that the model 
can predict summer droughts over Texas and the southern Great Plains region in spring with skill levels 
acceptable to decision makers (~60 percent or higher) — particularly those tasked with drought emergency 
                                                 
∗  The findings reported here have been published as the Texas Water Development Board Technical Note 15-02 
titled ‘Early warning of summer drought over Texas and the south central United States: spring conditions as a 
harbinger of summer drought’.  (Full report available at:  
http://www.twdb.texas.gov/publications/reports/technical_notes/doc/TechnicalNote15-02.pdf)  
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management.  The drought indicator shows higher success rates in correctly predicting the occurrence of dry 
or wet summers than the baseline drought predictability (that is, autocorrelation of rainfall anomalies) and 
forecasts from dynamical models over south central, central, northern and eastern Texas, western Louisiana, 
most of Oklahoma and southern Kansas at three to six months lead time. In all realizations of the model, we 
find that the grid points with the highest skill scores lie within Texas. The best skill is achieved when using 
April initial conditions (Fig. 1) of the three predictor variables. As a rule of thumb, if there is a high pressure 
system at 500 hectopascals over the Southern Great Plains, very high values of convective inhibition, and dry 
land-surface conditions in the region in April, there is a strong probability of an impending intense summer 
drought over this region.  

3. Test prediction for summer 2014 and lead time skill assessment 

We made a first forecast for the summer of 2014 using observed April fields. The forecast showed 
abnormally wet conditions, which better matched observed conditions than the official forecast from the 
National Oceanic and Atmospheric Administration’s Climate Prediction Center for this region (Fig. 2).   

 We developed a combined dynamic-statistical prediction approach to assess the feasibility of providing 
an early warning of summer drought at the four- to six-month lead time.  This approach uses the ensemble 
mean dynamic prediction for April conditions, initialized by observed conditions in January, February and 
March,  respectively,  as input  to  the statistical model to predict May through July rainfall anomalies,  or  the  

Fig. 1  Skill level as depicted by the Spearman’s Correlation (top), Relative Operating Characteristics Area 
(below-normal) (middle), and two-alternative Forced Choice (forecast categories) (bottom), using April 
(left), March (center) and March through May seasonal average (right) initial conditions for the predictor 
fields.  
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Fig. 2  Statistical prediction (left), official forecast using the National Multimodel Ensemble (middle), and 
observed (right) precipitation anomalies for the 2014 May through July season. 

Fig. 3  Six- to three-month lead categorical forecasts of the 6-month Standardized Precipitation Index for 
July (SPI6) in 2011 (top, from left to right), and observed July SPI6 in 2011 (bottom). 
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six-month SPI for July, at the 6-month, 5-month and 4-month lead time.  The categorical seasonal forecasts 
(that is, probabilistic estimates of whether a season will be below-, near- or above-normal) from the indicator 
provide added information on drought susceptibility for up to six-month lead time with the skill levels 
acceptable to decision makers.  Of notable interest is the ability of this combined dynamic and statistical 
approach to hindcast the 2011 summer drought in January with up to six month lead time (Fig. 3). This 
implies that the 2011 summer drought over Texas could have been predicted in January 2011. 

Given the performance of the drought early warning indicator over Texas, we will explore the possibility 
for providing summer drought forecasts from January onwards to the Texas Drought Preparedness Council, 
state emergency management initiatives, and water planners. Such forecasts would ideally be made available 
to the public through the Texas Water Development Board’s drought web page and the Water Data for Texas 
web site.  
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1. Overview 

 Permafrost is ground at or below freezing for at least two consecutive years.  It occupies about one 
quarter of the land in the northern hemisphere and 80% of the land in Alaska (see Figure 1a).  Permafrost 
temperature and active layer thickness (ALT) are the two essential climate variables to monitor the status of 
permafrost (Brown et al., 2008).  ALT is the maximum annual depth of thaw and permafrost temperature is 
the temperature of the permanently frozen soil below the active layer.  Observations indicate near surface 
permafrost has already begun to degrade (Figure 1b). The results of regional modeling of permafrost 
temperatures in Alaska in high spatial resolution during the 21st century indicate vast permafrost degradation 
throughout the whole State of Alaska (Jafarov et al., 2012).  Observed and projected permafrost degradation 
imply significant impacts on infrastructure and ecosystems (Oberman, 2008; Callaghan et al., 2011; Schaefer 
et al., 2014).  

Fig. 1  Time series of annual permafrost temperatures at 20m depth (b) measured from north to south across 
Alaska (a). Source: http://www.arctic.noaa.gov/report11/permafrost.html 

a 

b 
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Among the important Arctic resources threatened by 
thawing permafrost are vast reserves of oil and gas (O&G) and 
the associated exploration, production, and transportation 
infrastructure (Larsen, et al., 2008; Callaghan et al., 2011). The 
Interagency Working Group on Coordination of Domestic 
Energy Development and Permitting in Alaska (Clement, et al., 
2013) noted that the shorter frozen season for permafrost 
“presents challenges for land-based development” and details the 
large number of stakeholders affected by thawing permafrost in 
Alaska. It calls on the federal government to “strengthen the 
capacity of science programs to provide focused, ecosystem-
based information needed by decision-makers for wise 
stewardship and development of natural resources.” 

 As NOAA works to implement its 2014 Arctic Action Plan 
(NOAA, 2014) in response to such critical challenges, services 
related to permafrost change represent a missing piece of the 
climate service suite. Although the AAP refers to threats posed 
to Arctic communities and economies from thawing permafrost 
and identifies permafrost thawing as evidence of widespread and 
dramatic change, it fails to propose specific actions to address 
this challenge while acknowledging the need for additional research and integrated management of resources 
in general. However, it does list as one of NOAA’s six Arctic goals: Strengthen foundational science to 
understand and detect Arctic climate and ecosystem changes (NOAA, 2014, p. 10ff.). 

2. Recommendations towards permafrost forecasts 

To address this missing element in the AAP, we recommend NOAA link existing seasonal forecasts of 
temperature and precipitation (Yuan, et al., 2011) with an existing high-resolution model of the thermal state 
of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of permafrost active layer 
thickness (ALT). To validate ALT we suggest using current ground temperature measurements available 

throughout Alaska (Figure 2) in combination with ALT 
measurement from Circumpolar Active Layer Monitoring 
Network (CALM) available mainly at the North Slope of 
Alaska. Given the significant observed and projected damages 
to O&G and transportation infrastructure, local communities, 
ecosystems, and the large costs associated with such damage 
(Callaghan, et al., 2011; Larsen, et al., 2008) we recommend 
that NOAA integrate existing scientific resources such as the 
National Climate Predictions and Projections Platform (Rood, 
2011) to provide information through research activities and 
services that will contribute to efforts to reduce permafrost-
related loss and damage. This recommendation also addresses a 
previously identified need within the U.S. National Security 
Community (Jonassen and Alcorn, 2012).  

We distinguish this permafrost forecast service from the 
available projections of permafrost change (MacCracken, 
2001). In particular, the permafrost forecast would be an 
official NOAA statement 1  of the expected thermal state of 

                                                 
1 Official operational climate forecasts are specified, defined, and identified in National Weather Service Instruction 10-
1001, “Operations and Services, Climate Services, NWSPD 10-10, Climate Outlooks” (October 31, 2011), at 
http://www.nws.noaa.gov/ directives/sym/pd01010001curr.pdf. 

Fig. 2  Locations of existing ground 
temperature measurements in Alaska.  

Fig. 3  Thermosiphons protect the trans-
Alaska pipeline from permafrost damage. 
Source: 
http://www.eoearth.org/article/Permafrost 
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permafrost ALT in Alaska over the coming year on a seasonal basis. It would draw upon seasonal climate 
forecasts with demonstrated skill (Livezey and Timofeyeva, 2008) for up to a one-year lead. Existing 
projections are conditional statements of what might happen if certain conditions (particularly greenhouse gas 
concentration pathways) are realized over long times (decades) in the future (e.g. Duchesne, et al., 2008). 

A forecast ALT service requires: (1) long-term climate outlooks, (2) detailed understanding of local 
spatial controls upon soil thermal state such as vegetation and snow cover, soil texture, and ground exposure, 
(3) high-resolution vertical measurements of the thermal state and characteristics of soils, (4) a permafrost 
model, (5) integration of climate outlooks and permafrost model, (6) definition of the prognostic permafrost 
output, and (7) demonstration of forecast skill through pilot studies. Items #2 and #3 are rarely available in 
Alaska due to the high cost of collecting data and maintaining the relevant databases (Longley, et al., 2001). 
Thus, pilot efforts at permafrost forecasts should focus on specific sites and infrastructure where the cost of 
the effort can be justified by the potential returns in avoided loss and damage. O&G production and 
associated pipelines represents an ideal intersection of commercial and public interests and scientific 
capabilities for pilot studies. An existing Memorandum of Understanding with three petroleum companies 
that operate in US Arctic waters (Shell, Conoco-Phillips, and Statoil) provides an example of existing 
mutually beneficial cooperation (NOAA 2014, p.21).  

Examples of the utility of such forecasts begin with the O&G industry where we recommend the first 
pilot studies would occur. In this case, damage to pipelines is a regular occurrence during normal seasonal 
variations in ALT and significant engineering effort is required to maintain pipelines and associated 
infrastructure (Figure 3). Over half of the Trans-Alaska Pipeline System is elevated on vertical support 
members based on design standards from the period 1950-1970, one of the coldest periods on record (US 
Arctic Research Commission, 2003). We suggest that, by using ALT forecasts that have demonstrated skill, 
engineers could identify some months in advance where ALT changes are likely to damage infrastructure. 
They could focus resources and pre-position equipment so that they could more rapidly respond to pipeline 
damage and oil spills that might result. If successful, this effort can reduce costs of monitoring and repair as 
well as ecosystem damage and loss of resources. 

3. Future works 

Potential applications of ALT forecasts extend beyond the O&G industry. For example, the Inuit 
Circumpolar Council highlights permafrost degradation as a critical economic issue linked to air 
transportation, building foundations, and contaminated drinking water (Cochran, 2008).  Warming of frozen 
ground (without thawing) reduces its bearing capacity so that footings and support piles may be destabilized 
(Williams and Wallace, 1995). Thawing permafrost could add $6 billion in costs for Alaska’s public 
infrastructure, especially transportation infrastructure (Larsen, et al., 2008). NOAA has the opportunity to 
provide an important new service by offering forecasts of permafrost ALT for Alaska. 
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The vision of National Oceanic and Atmospheric Administration (NOAA) is to build a “Weather-Ready 
and Climate-Smart Nation”.  It requires our operation services providing the public skillful and reliable 
prediction products at the local level. To take on the challenge, National Weather Service (NWS) Science and 
Technology Infusion (S&TI) Climate Mission works for years to identify key scientific issues/problems in 
climate prediction and service operations and synthesize research and development needs that contribute to 
the NWS S&T development strategic plan. 

1. Background 

The forecast skill has a direct bearing on service quality, which the user community concerns the most.  
Current short-term climate prediction skill is limited, giving less confidence for decision making.  

The seamless prediction concept has been accepted by the weather-climate community.   Palmer et al. 
(2008) drew an analogy between the prediction system and a chain, and call to focus on the weakest link that 
determines the strength of a chain.  A further thought would be on where the weakest link is located. 

This presentation is to address the challenges facing us.  First, we look for clues from forecast outliers and 
unexpected failures that forecasters routinely see, and then have a discussion on how to get the most from 
current model output (low-hanging fruit) for better serving the user community.  Lastly, a summary is given 
from the science planning perspective on the hope of improving regional climate prediction for services. 

2. Puzzles 

The unexpected prediction failures/outliers, which puzzled our forecasters in routine operation, could be 
just the right entrance point to find the key to 
move forward.  Here are some examples. 

2.1 Unexpected outcome 

Figure 1 from Dr. van den Dool's 
presentation in 2012 shows that unexpectedly, 
the foremost weather forecast error is not due 
to random processes, nor to local factors, but 
rather to large-scale climate biases. However, 
by experimentally removing past N-days 
running-mean forecast errors, the overall levels 
of forecast skill are only modest.  It becomes 
clearer that the weather and climate model 
development has to be unified to achieve 
breakthrough performance. 

2.2 Forecast failure 

Figure 2 demonstrates a forecast failure, a 

Fig. 1  The leading two EOF modes of 975 hPa 
temperature 5-day forecast error (1979-12) by NCEP 
Climate Forecast System (CFS) version 2. (van den 
Dool  2012) 
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week-2 forecast running to the 
opposite of the observation, reported 
by Mike Halpert in 2006.  He looked 
at the near-range forecast and found 
that the 6-10 day forecast from 11/26 
initial condition can correctly capture 
the 500 hPa height observed pattern, 
while that from 11/25 initial condition 
cannot.  There were follow-up 
discussions between operation and 
research communities on what had 
been learned to improve the week-2 
forecast, which pointed to key 
vulnerable spots that need research to 
focus on, such as upstream regimes of 
weather system development, Day-1 
forecast errors and physical processes 
and interactions etc.  This case and the 
summary of discussion were posted 
on the Board of Outstanding Open 
Problem, NWS S&TI Climate Bulletin (http://www.nws.noaa.gov/ost/climate/STIP/ r2o+o2r.htm).  

2.3 Routine prediction outliers 

Outliers are extreme deviations from the others seen in routine forecast.  Figure 3 was taken from the 
week 2-4 tendency forecast experiment site maintained by Muthuvel Chelliah.  It showed the tendency 
forecast outliers on 8/16 (week 1P, 6-10 days), 8/20 (Week 2) and 8/26 (week 3).  All can be traced back to 
the initial state around 8/5-6.  Here raised an outstanding issue for the data assimilation community to 
investigate - What is the critical factor to cause the forecast skill dropping off significantly? 

2.4 Key predictors 

According to our forecasters, seasonal 
prediction mainly depends on three factors, 1. 
ENSO, 2. Long-term trend, 3. summertime soil 
moisture.   

For ENSO forecast, it is a long outstanding 
challenge to predict ENSO phase change.  Models 
are too much like persistence.  The events often 
start too late and then last beyond the time they 
should.   Figure 4 shows the ENSO prediction 
plume in a recent forecast, from which we can see 
most models prefer to predict El Niño 
development.  Comparing the performance of 
GFDL CM2 with that of ESSIC ICM, it is 
interesting to see that from August to September, 
when being closer to winter, ENSO development 
is accelerating predicted by both models but in 
opposite directions. 

For the long-term trend, the warming 
stagnation has been detected since 1998.  Models 
have difficulties to simulate that.  Research 
speculations are due to underestimation of 

Fig. 2  Left:  8-14 day temperature forecast based on NCEP Global 
Forecast System (GFS) ensemble made on 11/21 for 11/29-
12/5/2006.  Right: The observation for verification in the same 
period.  (Mike Halpert 2006) 

Fig. 3  Anomaly correlation skill of near US 2 meter 
temperature tendency forecast from late June to 
early September 2014 for 6-10 days (white), week 2 
(green), week 3 (yellow), and week 4 (red).   
(Chelliah 2014) 
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internal natural climate variability on decadal and longer time 
scales, influence of unaccounted external forcing factors, 
overestimation of the model sensitivity to elevated greenhouse 
gas concentrations, and roles played by ocean etc. These 
puzzles need to be further explored. 

3. Opportunities 

Now, CFS v3 development is on the way.  Before any 
model advancement being achieved, how can we get the most 
from current model outputs to better meet user needs?  
Following are some emerging opportunities. 

3.1 Regional-global model hybrid 

Research illustrates down-scaling by a good regional 
model does provide more useful information for service.  But 
the large scale dynamics could be altered due to the domain 
constrain.  Spectral nudging was used to prevent large 
unrealistic departures between the GCM driving fields and the 
RCM fields at the GCM spatial scales. 

Instead of doing spectral nudging, Liu and Wang (2014) 
with Laing took a simpler approach, using CFS to drive 
CWRF, a climate version of WRF model with optimum multi-
physics, and averaging the results of the two models. 
Preliminary result shows the prediction could not only beat 
CFS and CWRF individually, but also be comparable with 
current NMME. (See Figure 5. For illustration purpose, the 
figure shows each model with a single member.)  Since only 
two models are involved, it is easier to implement in-house 
and also convenient to upgrade in future.  

3.2 Tendency forecast 

Since the tendency correlation 
between the forecast and the observation 
is high1 (Chelliah 2013), this information 
can be used as forecast supplement to 
meet particular user needs, such as 
providing information on when the 
temperature will cool down during an 
extraordinary, sustained heat wave event 
etc.  

4. Summary 

Science planning has to be ahead of 
the operational development, which 
requires sensitiveness to research 
advancement for stepping over existing 
barriers.  Meanwhile, it is also important 
to communicate the obstacles that block 
our forecast improvement to research 

                                                 
1 To be useful for applications, the tendency correlation between forecast and observation has to be well above 0.5 for a 
single forecast or 0.7 for an ensemble forecast with large members.  (Delsole and Cash 2014, personal communication) 

Fig.4   Plume of model ENSO prediction 
of mid-August (top) and mid-
September (bottom). 

Fig. 5  JJA 2-m temperature (°C) of 2012 (upper) and 2013 
(lower).  From left to right are GDAS analysis, simulations by 
CFS and CWRF average and by NMME.  The spatial 
correlation coefficient/RMS error is indicated at the top right 
corner of each panel for simulations.   (Liu, Wang and Liang et 
al. 2014) 
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community.  The NWS S&TI Board of Outstanding Open Problems is set for our research partners to shoot 
arrows at the targets, thus accelerating our model improvement for better serving the user community.  The 
most challenging issue on effective climate service is to provide users skillful and reliable prediction 
information at the local level.    To move our service beyond obstacles, we need research support and 
advocate collaboration and mutual development.  

Acknowledgements.  All materials used in this presentation are credited to their original authors indicated 
under each figure.  Deep appreciation goes to outstanding researches that support NWS science and 
technology strategic planning and development.  
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