Evaluation of CAM forecasts for convective events in the ALY County Warning Area

Mike Evans

NWS / NOAA Albany, NY

Introduction – What we think we know

- CAMs are a great tool to evaluate convective potential... however:
- Forecasts that look very realistic are not always correct
- CAMs perform best at predicting convective evolution (squall lines vs. discrete storms).
- Details on timing and coverage of convection are not always reliable.
- CAMs sometimes tend to run "too hot".
- CAMs perform best when large-scale forcing is strong.

Methodology

- Evaluate CAMs forecasts for the 2021 season
- Examine 32 "significant" events (at least one severe or flash flood report)
- Examine 16 "null" events (SPC outlook indicated at least a marginal, no severe weather was observed).

Methodology continued

- Evaluations were subjective, following evaluations done at NOAA hazardous weather test beds (Clark et al., Jirak et al.)
- 9 forecasters evaluated and scored each case
- Forecasters ranged in experience from the SOO and a lead forecaster, to 2 students
- "Coverage" forecasts were scored from -5 to 5
- "Timing forecasts were scored from -5 to 5
- "Evolution" forecasts were scored from 0 to 5

Example – scoring a good forecast

Observed reflectivity at 00 UTC June 22

June 21, 2021 – Coverage = 0, Timing = -1, Evolution = 5

Example – scoring a bad forecast

Observed reflectivity at 00 UTC August 12

August 11, 2021 – Coverage = 4, Timing = -3, Evolution = 1

00z CAM run coverage (severe cases)

12z CAM coverage (severe cases)

00z CAM evolution (severe cases)

00z nam evolution (svr cases) 00z HRRR evolution (svr cases)

12z CAM evolution (severe cases)

■ 12z nam evolution (svr cases) ■ 12z HRRR evolution (svr cases)

00z CAM evolution (non-severe)

12z CAM evolution (non-severe)

Summary - primary findings

- Coverage was overdone for non-severe cases, slightly underdone for severe cases.
- Timing was too slow for severe cases, better for non-severe.
- There were no indications that either model was superior.
- The HRRR seemed to improve from 00z to 12z for non-severe cases, otherwise no improvements from 00z to 12z.

References

- Jirak et al, 2020: Evaluation of multiple analysis systems in the 2019 HWO spring forecasting experiment, 30th conference on weather Analysis and Forecasting / 26th conference on numerical weather prediction (NWP) analysis and forecasting for recent field campaings and testbeds, Amer. Meteor. Soc., 12C.3. https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/366623
- Clark et al, 2020: The 2019 NOAA hazardous weather testbed spring forecasting experiment, 10th conference on transition of research to operations testbeds to enable and accelerate transitions of R2O to decision-makes, end users, and the public in weather, water, or climate applications, Amer. Meteor. Soc. https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/366950